reab5555 commited on
Commit
b568300
·
verified ·
1 Parent(s): eaaf497

Create voice_analysis.py

Browse files
Files changed (1) hide show
  1. voice_analysis.py +40 -0
voice_analysis.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from speechbrain.pretrained import EncoderClassifier
4
+ from pydub import AudioSegment
5
+ from sklearn.cluster import DBSCAN
6
+ import librosa
7
+
8
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
+ classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", savedir="pretrained_models/spkrec-ecapa-voxceleb", run_opts={"device": device})
10
+
11
+ def extract_voice_embedding(audio_segment):
12
+ signal = np.array(audio_segment.get_array_of_samples())
13
+ signal = signal.astype(np.float32) / 32768.0 # Normalize to [-1, 1]
14
+ embedding = classifier.encode_batch(torch.tensor(signal).unsqueeze(0))
15
+ return embedding.squeeze().cpu().numpy()
16
+
17
+ def process_audio(audio_path, segment_duration=1000):
18
+ audio = AudioSegment.from_file(audio_path)
19
+ segments = [audio[i:i+segment_duration] for i in range(0, len(audio), segment_duration)]
20
+ embeddings = [extract_voice_embedding(segment) for segment in segments]
21
+ return embeddings
22
+
23
+ def cluster_voices(embeddings):
24
+ if len(embeddings) < 2:
25
+ print("Not enough voice segments for clustering. Assigning all to one cluster.")
26
+ return np.zeros(len(embeddings), dtype=int)
27
+
28
+ X = np.stack(embeddings)
29
+ dbscan = DBSCAN(eps=0.3, min_samples=5, metric='cosine')
30
+ clusters = dbscan.fit_predict(X)
31
+
32
+ if np.all(clusters == -1):
33
+ print("DBSCAN assigned all to noise. Considering as one cluster.")
34
+ return np.zeros(len(embeddings), dtype=int)
35
+
36
+ return clusters
37
+
38
+ def get_most_frequent_voice(embeddings, clusters):
39
+ largest_cluster = max(set(clusters), key=list(clusters).count)
40
+ return [emb for emb, cluster in zip(embeddings, clusters) if cluster == largest_cluster]