File size: 14,172 Bytes
07bcae5
 
 
 
 
 
 
 
92d07e4
82a9df1
cdca32f
07bcae5
afbf6b6
b9aee76
07bcae5
 
 
 
cdca32f
07bcae5
 
1329575
07bcae5
 
312aaaf
07bcae5
 
 
 
 
 
 
 
cdca32f
 
07bcae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
944ef0c
07bcae5
 
 
 
 
 
 
 
 
 
 
 
4b68039
 
 
34e892d
07bcae5
 
34e892d
07bcae5
 
 
 
 
4b68039
07bcae5
34e892d
07bcae5
 
cdca32f
 
 
 
 
 
 
07bcae5
 
 
 
 
 
 
d72f1a7
07bcae5
 
d72f1a7
cdca32f
 
 
d72f1a7
cdca32f
d72f1a7
 
 
 
 
 
 
 
 
 
 
 
 
 
cdca32f
 
 
 
 
 
d72f1a7
 
cdca32f
 
d72f1a7
cdca32f
34e892d
d72f1a7
afbf6b6
cdca32f
0271df1
07bcae5
 
 
 
cdca32f
07bcae5
 
 
 
 
 
 
 
 
 
 
 
 
 
10f371d
07bcae5
 
 
 
 
 
 
 
 
 
944ef0c
 
07bcae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdca32f
07bcae5
 
cdca32f
 
07bcae5
cdca32f
07bcae5
 
cdca32f
07bcae5
 
 
 
d72f1a7
 
07bcae5
 
cdca32f
 
 
 
 
312aaaf
07bcae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af91dd4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import cv2
import numpy as np
from moviepy.editor import VideoFileClip
import tempfile
import time
from PIL import Image, ImageDraw, ImageFont
import math
from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_person, draw_facial_landmarks
from pose_analysis import pose, calculate_posture_score, draw_pose_landmarks
from voice_analysis import extract_audio_from_video, diarize_speakers, get_speaker_embeddings
from anomaly_detection import anomaly_detection
from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap, create_video_with_heatmap
from utils import frame_to_timecode
import pandas as pd
from facenet_pytorch import MTCNN
import torch
import mediapipe as mp
from pyannote.audio import Model

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.9, 0.9, 0.9], min_face_size=50)

mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.8)

def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
    start_time = time.time()
    output_folder = "output"
    os.makedirs(output_folder, exist_ok=True)

    GRAPH_COLORS = {
        'facial_embeddings': 'navy',
        'body_posture': 'purple',
        'voice': 'green'
    }

    with tempfile.TemporaryDirectory() as temp_dir:
        aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
        organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
        os.makedirs(aligned_faces_folder, exist_ok=True)
        os.makedirs(organized_faces_folder, exist_ok=True)

        clip = VideoFileClip(video_path)
        video_duration = clip.duration
        clip.close()

        progress(0, "Starting frame extraction")
        frames_folder = os.path.join(temp_dir, 'extracted_frames')

        def extraction_progress(percent, message):
            progress(percent / 100, f"Extracting frames")

        frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)

        progress(1, "Frame extraction complete")
        progress(0.3, "Processing frames")
        embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths, facial_landmarks_by_frame = process_frames(
            frames_folder, aligned_faces_folder,
            frame_count,
            progress)

        if not aligned_face_paths:
            raise ValueError("No faces were extracted from the video.")

        progress(0.6, "Clustering faces")
        embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
        clusters = cluster_faces(embeddings)
        num_clusters = len(set(clusters))

        # Adding the 'Cluster' column to the DataFrame
        cluster_by_frame = {frame_num: cluster for frame_num, cluster in zip(embeddings_by_frame.keys(), clusters)}

        progress(0.65, "Organizing faces")
        organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)

        progress(0.7, "Saving person data")
        df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps,
                                                      original_fps, temp_dir, video_duration)

        df['Seconds'] = df['Timecode'].apply(
            lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
        df['Cluster'] = df['Frame'].map(cluster_by_frame)

        progress(0.75, "Getting face samples")
        face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)

        progress(0.8, "Extracting audio and performing voice analysis")
        audio_path = extract_audio_from_video(video_path)
        diarization = diarize_speakers(audio_path)
        voice_model = Model.from_pretrained("pyannote/embedding")
        voice_embeddings = get_speaker_embeddings(audio_path, diarization, voice_model)

        progress(0.85, "Performing anomaly detection")
        embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]

        X_embeddings = df[embedding_columns].values

        try:
            X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
            X_posture = X_posture[X_posture != None].reshape(-1, 1)

            if len(X_posture) == 0:
                raise ValueError("No valid posture data found")

            X_voice = np.array([emb['embedding'] for emb in voice_embeddings])

            mse_embeddings, mse_posture, mse_voice = anomaly_detection(X_embeddings, X_posture, X_voice)

            progress(0.9, "Generating graphs")
            mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
                                                                      color=GRAPH_COLORS['facial_embeddings'],
                                                                      anomaly_threshold=anomaly_threshold)

            mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
                                                          anomaly_threshold, color=GRAPH_COLORS['facial_embeddings'])

            mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
                                                                color=GRAPH_COLORS['body_posture'],
                                                                anomaly_threshold=anomaly_threshold)

            mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
                                                       anomaly_threshold, color=GRAPH_COLORS['body_posture'])

            mse_plot_voice, anomaly_frames_voice = plot_mse(df, mse_voice, "Voice",
                                                            color=GRAPH_COLORS['voice'],
                                                            anomaly_threshold=anomaly_threshold)

            mse_histogram_voice = plot_mse_histogram(mse_voice, "MSE Distribution: Voice",
                                                     anomaly_threshold, color=GRAPH_COLORS['voice'])

            mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
            mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
            mse_heatmap_voice = plot_mse_heatmap(mse_voice, "Voice MSE Heatmap", df)

            progress(0.95, "Generating video with heatmap")

            # Create video with heatmap
            heatmap_video_path = os.path.join(output_folder, "heatmap_video.mp4")
            heatmap_video_path = create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, heatmap_video_path, original_fps, largest_cluster)
            
        except Exception as e:
            print(f"Error details: {str(e)}")
            import traceback
            traceback.print_exc()
            return (f"Error in video processing: {str(e)}",) + (None,) * 21

        progress(1.0, "Preparing results")
        results = f"Number of persons detected: {num_clusters}\n\n"
        results += "Breakdown:\n"
        for cluster_id in range(num_clusters):
            face_count = len([c for c in clusters if c == cluster_id])
            results += f"Person {cluster_id + 1}: {face_count} face frames\n"

        end_time = time.time()
        execution_time = end_time - start_time

        def add_timecode_to_image(image, timecode):
            img_pil = Image.fromarray(image)
            draw = ImageDraw.Draw(img_pil)
            font = ImageFont.load_default()
            draw.text((10, 10), timecode, (255, 0, 0), font=font)
            return np.array(img_pil)

        anomaly_faces_embeddings = []
        for frame in anomaly_frames_embeddings:
            face_path = os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg")
            if os.path.exists(face_path):
                face_img = cv2.imread(face_path)
                if face_img is not None:
                    face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
                    if frame in facial_landmarks_by_frame:
                        face_img = draw_facial_landmarks(face_img, facial_landmarks_by_frame[frame])
                    timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
                    face_img_with_timecode = add_timecode_to_image(face_img, timecode)
                    anomaly_faces_embeddings.append(face_img_with_timecode)

        anomaly_frames_posture_images = []
        for frame in anomaly_frames_posture:
            frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
            if os.path.exists(frame_path):
                frame_img = cv2.imread(frame_path)
                if frame_img is not None:
                    frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
                    pose_results = pose.process(frame_img)
                    if pose_results.pose_landmarks:
                        frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
                    timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
                    frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
                    anomaly_frames_posture_images.append(frame_img_with_timecode)

        return (
            execution_time,
            results,
            df,
            mse_embeddings,
            mse_posture,
            mse_voice,
            mse_plot_embeddings,
            mse_plot_posture,
            mse_plot_voice,
            mse_histogram_embeddings,
            mse_histogram_posture,
            mse_histogram_voice,
            mse_heatmap_embeddings,
            mse_heatmap_posture,
            mse_heatmap_voice,
            face_samples["most_frequent"],
            anomaly_faces_embeddings,
            anomaly_frames_posture_images,
            aligned_faces_folder,
            frames_folder,
            heatmap_video_path
        )





        
def is_frontal_face(landmarks, threshold=60):
    nose_tip = landmarks[4]
    left_chin = landmarks[234]
    right_chin = landmarks[454]
    nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y]
    nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y]
    dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1]
    magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2)
    magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2)
    cos_angle = dot_product / (magnitude_left * magnitude_right)
    angle = math.acos(cos_angle)
    angle_degrees = math.degrees(angle)
    return abs(180 - angle_degrees) < threshold

def save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
    person_data = {}

    for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
        if cluster not in person_data:
            person_data[cluster] = []
        person_data[cluster].append((frame_num, embedding))

    largest_cluster = max(person_data, key=lambda k: len(person_data[k]))

    data = person_data[largest_cluster]
    data.sort(key=lambda x: x[0])
    frames, embeddings = zip(*data)

    embeddings_array = np.array(embeddings)
    np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)

    total_frames = max(frames)
    timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]

    df_data = {
        'Frame': frames,
        'Timecode': timecodes,
        'Embedding_Index': range(len(embeddings))
    }

    for i in range(len(embeddings[0])):
        df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]

    df = pd.DataFrame(df_data)

    return df, largest_cluster

def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=100):
    face_samples = {"most_frequent": [], "others": []}
    for cluster_folder in sorted(os.listdir(organized_faces_folder)):
        if cluster_folder.startswith("person_"):
            person_folder = os.path.join(organized_faces_folder, cluster_folder)
            face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
            if face_files:
                cluster_id = int(cluster_folder.split('_')[1])
                if cluster_id == largest_cluster:
                    for i, sample in enumerate(face_files[:max_samples]):
                        face_path = os.path.join(person_folder, sample)
                        output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
                        face_img = cv2.imread(face_path)
                        if face_img is not None:
                            small_face = cv2.resize(face_img, (160, 160))
                            cv2.imwrite(output_path, small_face)
                            face_samples["most_frequent"].append(output_path)
                        if len(face_samples["most_frequent"]) >= max_samples:
                            break
                else:
                    remaining_samples = max_samples - len(face_samples["others"])
                    if remaining_samples > 0:
                        for i, sample in enumerate(face_files[:remaining_samples]):
                            face_path = os.path.join(person_folder, sample)
                            output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
                            face_img = cv2.imread(face_path)
                            if face_img is not None:
                                small_face = cv2.resize(face_img, (160, 160))
                                cv2.imwrite(output_path, small_face)
                                face_samples["others"].append(output_path)
                            if len(face_samples["others"]) >= max_samples:
                                break
    return face_samples