File size: 22,761 Bytes
ad8946e f0f70ca ad8946e 3cd2108 9b4ede0 7f69142 71c70ef 7f69142 71c70ef ad8946e f0f70ca ad8946e 7f69142 ad8946e f0f70ca ad8946e 9b4ede0 1a445f9 9b4ede0 1a445f9 9b4ede0 9de451e 9b4ede0 1a445f9 7f69142 1a445f9 9de451e 1a445f9 7f69142 1a445f9 9de451e 1a445f9 9b4ede0 ad8946e 9de451e 9b4ede0 9de451e 9b4ede0 ad8946e 7f69142 ad8946e 7f69142 ad8946e 7f69142 ad8946e 7f69142 ad8946e 7f69142 ad8946e 7f69142 ad8946e 7f69142 ad8946e 7a942e5 ad8946e 7f69142 ad8946e 1848c43 ad8946e 7f69142 ad8946e 1848c43 ad8946e 1848c43 ad8946e 1848c43 ad8946e 1848c43 ad8946e 9b4ede0 7f69142 9b4ede0 7f69142 ad8946e 1848c43 9b4ede0 7f69142 9b4ede0 7f69142 ad8946e 1848c43 ad8946e 7f69142 ad8946e 7f69142 1848c43 7f69142 ad8946e 7f69142 71c70ef ad8946e 3dee4f6 353d877 7f69142 353d877 ad8946e 9b4ede0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from facenet_pytorch import InceptionResnetV1, MTCNN
import mediapipe as mp
from fer import FER
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import silhouette_score
from scipy.spatial.distance import cdist
import umap
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import gradio as gr
import tempfile
import shutil
import subprocess
import fractions
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
# Initialize models and other global variables
device = 'cuda' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100, selection_method='largest')
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
emotion_detector = FER(mtcnn=False)
def frame_to_timecode(frame_num, original_fps, desired_fps):
total_seconds = frame_num / original_fps
hours = int(total_seconds // 3600)
minutes = int((total_seconds % 3600) // 60)
seconds = int(total_seconds % 60)
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
def get_face_embedding_and_emotion(face_img):
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
face_tensor = (face_tensor - 0.5) / 0.5
face_tensor = face_tensor.to(device)
with torch.no_grad():
embedding = model(face_tensor)
emotions = emotion_detector.detect_emotions(face_img)
if emotions:
emotion_dict = emotions[0]['emotions']
else:
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']}
return embedding.cpu().numpy().flatten(), emotion_dict
def alignFace(img):
img_raw = img.copy()
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return None
landmarks = results.multi_face_landmarks[0].landmark
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
left_eye_center = left_eye.mean(axis=0).astype(np.int32)
right_eye_center = right_eye.mean(axis=0).astype(np.int32)
dY = right_eye_center[1] - left_eye_center[1]
dX = right_eye_center[0] - left_eye_center[0]
angle = np.degrees(np.arctan2(dY, dX))
desired_angle = 0
angle_diff = desired_angle - angle
height, width = img_raw.shape[:2]
center = (width // 2, height // 2)
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
return new_img
def extract_frames(video_path, output_folder, fps):
os.makedirs(output_folder, exist_ok=True)
command = [
'ffmpeg',
'-i', video_path,
'-vf', f'fps={fps}',
f'{output_folder}/frame_%04d.jpg'
]
try:
result = subprocess.run(command, check=True, capture_output=True, text=True)
print(f"FFmpeg stdout: {result.stdout}")
print(f"FFmpeg stderr: {result.stderr}")
except subprocess.CalledProcessError as e:
print(f"Error extracting frames: {e}")
print(f"FFmpeg stdout: {e.stdout}")
print(f"FFmpeg stderr: {e.stderr}")
raise
def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps, progress=gr.Progress()):
print(f"Processing video: {video_path}")
frames_folder = os.path.join(os.path.dirname(aligned_faces_folder), 'extracted_frames')
extract_frames(video_path, frames_folder, desired_fps)
ffprobe_command = [
'ffprobe',
'-v', 'error',
'-select_streams', 'v:0',
'-count_packets',
'-show_entries', 'stream=nb_read_packets,r_frame_rate',
'-of', 'csv=p=0',
video_path
]
try:
ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
print(f"FFprobe output: {ffprobe_output}")
if len(ffprobe_output) != 2:
raise ValueError(f"Unexpected FFprobe output format: {ffprobe_output}")
frame_rate, frame_count = ffprobe_output
print(f"Frame count (raw): {frame_count}")
print(f"Frame rate (raw): {frame_rate}")
try:
frac = fractions.Fraction(frame_rate)
original_fps = float(frac.numerator) / float(frac.denominator)
except (ValueError, ZeroDivisionError):
print(f"Warning: Could not convert frame rate '{frame_rate}' to float. Using fallback method.")
duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', video_path]
duration = float(subprocess.check_output(duration_command, universal_newlines=True).strip())
original_fps = int(frame_count) / duration
frame_count = int(frame_count)
except subprocess.CalledProcessError as e:
print(f"Error running FFprobe: {e}")
raise
except Exception as e:
print(f"Unexpected error processing video info: {e}")
raise
print(f"Total frames: {frame_count}, Original FPS: {original_fps}, Desired FPS: {desired_fps}")
embeddings_by_frame = {}
emotions_by_frame = {}
for i, frame_file in enumerate(sorted(os.listdir(frames_folder))):
if frame_file.endswith('.jpg'):
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.imread(frame_path)
progress((i + 1) / len(os.listdir(frames_folder)), f"Processing frame {i + 1} of {len(os.listdir(frames_folder))}")
if frame is None:
print(f"Skipping frame {frame_num}: Could not read frame")
continue
try:
boxes, probs = mtcnn.detect(frame)
if boxes is not None and len(boxes) > 0:
box = boxes[0]
if probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in box]
face = frame[y1:y2, x1:x2]
if face.size == 0:
print(f"Skipping frame {frame_num}: Detected face region is empty")
continue
aligned_face = alignFace(face)
if aligned_face is not None:
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, aligned_face_resized)
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
embeddings_by_frame[frame_num] = embedding
emotions_by_frame[frame_num] = emotion
except Exception as e:
print(f"Error processing frame {frame_num}: {str(e)}")
continue
return embeddings_by_frame, emotions_by_frame, desired_fps, original_fps
def cluster_embeddings(embeddings):
if len(embeddings) < 2:
print("Not enough embeddings for clustering. Assigning all to one cluster.")
return np.zeros(len(embeddings), dtype=int)
n_clusters = min(3, len(embeddings)) # Use at most 3 clusters
scaler = StandardScaler()
embeddings_scaled = scaler.fit_transform(embeddings)
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
clusters = kmeans.fit_predict(embeddings_scaled)
return clusters
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
os.makedirs(person_folder, exist_ok=True)
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
shutil.copy(src, dst)
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, num_components):
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'neutral']
person_data = {}
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
emotions_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings, emotions_data = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
reducer = umap.UMAP(n_components=num_components, random_state=1)
embeddings_reduced = reducer.fit_transform(embeddings)
scaler = MinMaxScaler(feature_range=(0, 1))
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames]
times_in_minutes = [frame / (original_fps * 60) for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Time (Minutes)': times_in_minutes,
'Embedding_Index': range(len(embeddings))
}
for i in range(num_components):
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
for emotion in emotions:
df_data[emotion] = [e[emotion] for e in emotions_data]
df = pd.DataFrame(df_data)
return df, largest_cluster
class LSTMAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size=64, num_layers=2):
super(LSTMAutoencoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
_, (hidden, _) = self.lstm(x)
out = self.fc(hidden[-1])
return out
def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(X).to(device)
train_size = int(0.85 * len(X))
X_train, X_val = X[:train_size], X[train_size:]
model = LSTMAutoencoder(input_size=len(feature_columns)).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output_train = model(X_train.unsqueeze(0))
loss_train = criterion(output_train, X_train)
loss_train.backward()
optimizer.step()
model.eval()
with torch.no_grad():
output_val = model(X_val.unsqueeze(0))
loss_val = criterion(output_val, X_val)
model.eval()
with torch.no_grad():
reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
# Compute anomalies for all features
mse_all = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
anomalies_all = np.zeros(len(mse_all), dtype=bool)
anomalies_all[top_indices_all] = True
# Compute anomalies for components only
component_columns = [col for col in feature_columns if col.startswith('Comp')]
component_indices = [feature_columns.index(col) for col in component_columns]
mse_comp = np.mean(np.power(X.cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
anomalies_comp[top_indices_comp] = True
return (anomalies_all, mse_all, top_indices_all,
anomalies_comp, mse_comp, top_indices_comp,
model)
def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
fig, ax = plt.subplots(figsize=(16, 8))
bars = ax.bar(range(len(df)), anomaly_scores, width=0.8, color='skyblue')
for i in top_indices:
bars[i].set_color('red')
ax.set_xlabel('Timecode')
ax.set_ylabel('Anomaly Score')
ax.set_title(f'Anomaly Scores Over Time ({title})')
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
ticks = ax.get_xticks()
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
plt.tight_layout()
return fig
def plot_emotion(df, emotion, num_anomalies):
fig, ax = plt.subplots(figsize=(16, 8))
values = df[emotion].values
bars = ax.bar(range(len(df)), values, width=0.8, color='lightgreen')
top_indices = np.argsort(values)[-num_anomalies:][::-1]
for i in top_indices:
bars[i].set_color('red')
ax.set_xlabel('Timecode')
ax.set_ylabel(f'{emotion.capitalize()} Score')
ax.set_title(f'{emotion.capitalize()} Scores Over Time (Top {num_anomalies} in Red)')
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
ticks = ax.get_xticks()
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
plt.tight_layout()
return fig
def plot_components(df):
fig, ax = plt.subplots(figsize=(16, 8))
component_columns = [col for col in df.columns if col.startswith('Comp')]
for col in component_columns:
ax.plot(df['Time (Minutes)'], df[col], label=col)
ax.set_xlabel('Time (Minutes)')
ax.set_ylabel('Component Value')
ax.set_title('UMAP Components Over Time')
ax.legend()
plt.tight_layout()
return fig
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
with tempfile.TemporaryDirectory() as temp_dir:
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(aligned_faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
progress(0.1, "Extracting frames")
frames_folder = os.path.join(temp_dir, 'extracted_frames')
extract_frames(video_path, frames_folder, desired_fps)
progress(0.2, "Getting video info")
frame_count, original_fps = get_video_info(video_path)
progress(0.3, "Processing frames")
embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count, progress)
if not embeddings_by_frame:
return "No faces were extracted from the video.", None, None, None, None, None, None
progress(0.6, "Clustering embeddings")
embeddings = list(embeddings_by_frame.values())
clusters = cluster_embeddings(embeddings)
progress(0.7, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
progress(0.8, "Saving person data")
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components)
progress(0.9, "Performing anomaly detection")
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
try:
anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
except Exception as e:
return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None
progress(0.95, "Generating plots")
try:
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only")
components_plot = plot_components(df)
emotion_plots = [plot_emotion(df, emotion, num_anomalies) for emotion in ['fear', 'sad', 'angry']]
except Exception as e:
return f"Error generating plots: {str(e)}", None, None, None, None, None, None
progress(1.0, "Preparing results")
results = f"Top {num_anomalies} anomalies (All Features):\n"
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
results += f"\n\nTop {num_anomalies} anomalies (Components Only):\n"
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
zip(anomaly_scores_comp[top_indices_comp], df['Timecode'].iloc[top_indices_comp].values)])
for emotion in ['fear', 'sad', 'angry']:
top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1]
results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n"
results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices])
return results, anomaly_plot_all, anomaly_plot_comp, components_plot, *emotion_plots
def get_video_info(video_path):
ffprobe_command = [
'ffprobe',
'-v', 'error',
'-select_streams', 'v:0',
'-count_packets',
'-show_entries', 'stream=nb_read_packets,r_frame_rate',
'-of', 'csv=p=0',
video_path
]
ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
frame_rate, frame_count = ffprobe_output
frac = fractions.Fraction(frame_rate)
original_fps = float(frac.numerator) / float(frac.denominator)
frame_count = int(frame_count)
return frame_count, original_fps
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
embeddings_by_frame = {}
emotions_by_frame = {}
for i, frame_file in enumerate(sorted(os.listdir(frames_folder))):
if frame_file.endswith('.jpg'):
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.imread(frame_path)
progress((i + 1) / frame_count, f"Processing frame {i + 1} of {frame_count}")
if frame is None:
print(f"Skipping frame {frame_num}: Could not read frame")
continue
try:
boxes, probs = mtcnn.detect(frame)
if boxes is not None and len(boxes) > 0:
box = boxes[0]
if probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in box]
face = frame[y1:y2, x1:x2]
if face.size == 0:
print(f"Skipping frame {frame_num}: Detected face region is empty")
continue
aligned_face = alignFace(face)
if aligned_face is not None:
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, aligned_face_resized)
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
embeddings_by_frame[frame_num] = embedding
emotions_by_frame[frame_num] = emotion
except Exception as e:
print(f"Error processing frame {frame_num}: {str(e)}")
continue
return embeddings_by_frame, emotions_by_frame
# Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Anomalies"),
gr.Slider(minimum=2, maximum=5, step=1, value=3, label="Number of Components"),
gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"),
gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size")
],
outputs=[
gr.Textbox(label="Anomaly Detection Results"),
gr.Plot(label="Anomaly Scores (All Features)"),
gr.Plot(label="Anomaly Scores (Components Only)"),
gr.Plot(label="UMAP Components"),
gr.Plot(label="Fear Scores"),
gr.Plot(label="Sad Scores"),
gr.Plot(label="Angry Scores")
],
title="Facial Expressions Anomaly Detection",
description="""
This application detects anomalies in facial expressions and emotions from a video input.
It focuses on the most frequently appearing person in the video for analysis.
Adjust the parameters as needed:
- Number of Anomalies: How many top anomalies or high intensities to highlight
- Number of Components: Complexity of the facial expression model
- Desired FPS: Frames per second to analyze (lower for faster processing)
- Batch Size: Affects processing speed and memory usage
"""
)
if __name__ == "__main__":
iface.launch() |