reab5555's picture
Update app.py
e674f2c verified
raw
history blame
12.4 kB
import torch
from PIL import Image
import requests
from openai import OpenAI
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
AutoProcessor, AutoModelForMaskGeneration)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import base64
import io
import numpy as np
import gradio as gr
import json
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
def encode_image_to_base64(image):
print(f"Encode image type: {type(image)}") # Debug print
try:
# If image is a tuple (as sometimes provided by Gradio), take the first element
if isinstance(image, tuple):
print(f"Image is tuple with length: {len(image)}") # Debug print
if len(image) > 0 and image[0] is not None:
if isinstance(image[0], np.ndarray):
image = Image.fromarray(image[0])
else:
image = image[0]
else:
raise ValueError("Invalid image tuple provided")
# If image is a numpy array, convert to PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# If image is a path string, open it
elif isinstance(image, str):
image = Image.open(image)
print(f"Image type after conversion: {type(image)}") # Debug print
# Ensure image is in PIL Image format
if not isinstance(image, Image.Image):
raise ValueError(f"Input must be a PIL Image, numpy array, or valid image path. Got {type(image)}")
# Convert image to RGB if it's in RGBA mode
if image.mode == 'RGBA':
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
except Exception as e:
print(f"Encode error details: {str(e)}") # Debug print
raise
def analyze_image(image):
client = OpenAI(api_key=OPENAI_API_KEY)
base64_image = encode_image_to_base64(image)
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": """Your task is to determine if the image is surprising or not surprising.
if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.
Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
Provide the response as a JSON with the following structure:
{
"label": "[surprising OR not surprising]",
"element": "[element]",
"rating": [1-5]
}"""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
]
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
max_tokens=100,
temperature=0.1,
response_format={
"type": "json_object"
}
)
return response.choices[0].message.content
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([1.0, 0.0, 0.0, 0.5])
if len(mask.shape) == 4:
mask = mask[0, 0]
mask_image = np.zeros((*mask.shape, 4), dtype=np.float32)
mask_image[mask > 0] = color
ax.imshow(mask_image)
def process_image_detection(image, target_label, surprise_rating):
# Handle different image input types
if isinstance(image, tuple):
if len(image) > 0 and image[0] is not None:
image = Image.fromarray(image[0])
else:
raise ValueError("Invalid image tuple provided")
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
# Ensure image is in PIL Image format
if not isinstance(image, Image.Image):
raise ValueError("Input must be a PIL Image, numpy array, or valid image path")
# Ensure image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
device = "cuda" if torch.cuda.is_available() else "cpu"
# Get original image DPI and size
original_dpi = image.info.get('dpi', (72, 72))
original_size = image.size
# Calculate relative font size based on image dimensions
base_fontsize = min(original_size) / 40
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device)
image_np = np.array(image)
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = owlv2_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]]).to(device)
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
dpi = 300
figsize = (original_size[0] / dpi, original_size[1] / dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
fig.add_axes(ax)
plt.imshow(image)
scores = results["scores"]
if len(scores) > 0:
max_score_idx = scores.argmax().item()
max_score = scores[max_score_idx].item()
if max_score > 0.2:
box = results["boxes"][max_score_idx].cpu().numpy()
sam_inputs = sam_processor(
image,
input_boxes=[[[box[0], box[1], box[2], box[3]]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
sam_outputs = sam_model(**sam_inputs)
masks = sam_processor.image_processor.post_process_masks(
sam_outputs.pred_masks.cpu(),
sam_inputs["original_sizes"].cpu(),
sam_inputs["reshaped_input_sizes"].cpu()
)
mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0]
show_mask(mask, ax=ax)
# Draw rectangle with increased line width
rect = patches.Rectangle(
(box[0], box[1]),
box[2] - box[0],
box[3] - box[1],
linewidth=max(2, min(original_size) / 500),
edgecolor='red',
facecolor='none'
)
ax.add_patch(rect)
# Add confidence score with improved visibility
plt.text(
box[0], box[1] - base_fontsize,
f'{max_score:.2f}',
color='red',
fontsize=base_fontsize,
fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2)
)
# Add label and rating with improved visibility
plt.text(
box[2] + base_fontsize / 2, box[1],
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
color='red',
fontsize=base_fontsize,
fontweight='bold',
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2),
verticalalignment='bottom'
)
plt.axis('off')
# Save with high DPI
buf = io.BytesIO()
plt.savefig(buf,
format='png',
dpi=dpi,
bbox_inches='tight',
pad_inches=0,
metadata={'dpi': original_dpi})
buf.seek(0)
plt.close()
# Process final image
output_image = Image.open(buf)
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
final_buf = io.BytesIO()
output_image.save(final_buf, format='PNG', dpi=original_dpi)
final_buf.seek(0)
return final_buf
def process_and_analyze(image):
if image is None:
return None, "Please upload an image first."
print(f"Initial image type: {type(image)}") # Debug print
if OPENAI_API_KEY is None:
return None, "OpenAI API key not found in environment variables."
try:
# Convert the image to PIL format if needed
if isinstance(image, tuple):
print(f"Image is tuple, length: {len(image)}") # Debug print
if len(image) > 0 and image[0] is not None:
if isinstance(image[0], np.ndarray):
image = Image.fromarray(image[0])
else:
print(f"First element type: {type(image[0])}") # Debug print
image = image[0]
else:
return None, "Invalid image format provided"
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, str):
image = Image.open(image)
print(f"Image type after conversion: {type(image)}") # Debug print
if not isinstance(image, Image.Image):
return None, f"Invalid image format: {type(image)}"
# Ensure image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
# Analyze image
print("Starting GPT analysis...") # Debug print
gpt_response = analyze_image(image)
print(f"GPT response: {gpt_response}") # Debug print
try:
response_data = json.loads(gpt_response)
except json.JSONDecodeError:
return None, "Error: Invalid response format from GPT"
if not all(key in response_data for key in ["label", "element", "rating"]):
return None, "Error: Missing required fields in analysis response"
print(f"Response data: {response_data}") # Debug print
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
try:
print("Starting image detection...") # Debug print
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
result_image = Image.open(result_buf)
analysis_text = (
f"Label: {response_data['label']}\n"
f"Element: {response_data['element']}\n"
f"Rating: {response_data['rating']}/5"
)
return result_image, analysis_text
except Exception as detection_error:
print(f"Detection error details: {str(detection_error)}") # Debug print
return None, f"Error in image detection processing: {str(detection_error)}"
else:
return image, "Not Surprising"
except Exception as e:
error_type = type(e).__name__
error_msg = str(e)
detailed_error = f"Error ({error_type}): {error_msg}"
print(detailed_error) # Debug print
return None, f"Error processing image: {error_msg}"
# Create Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Image Surprise Analysis")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload Image")
analyze_btn = gr.Button("Analyze Image")
with gr.Column():
output_image = gr.Image(label="Processed Image")
output_text = gr.Textbox(label="Analysis Results")
analyze_btn.click(
fn=process_and_analyze,
inputs=[input_image],
outputs=[output_image, output_text]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()