import torch from PIL import Image import requests from openai import OpenAI from transformers import (Owlv2Processor, Owlv2ForObjectDetection, AutoProcessor, AutoModelForMaskGeneration) import matplotlib.pyplot as plt import matplotlib.patches as patches import base64 import io import numpy as np import gradio as gr import json import os from dotenv import load_dotenv # Load environment variables load_dotenv() OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') def encode_image_to_base64(image): print(f"Encode image type: {type(image)}") # Debug print try: # If image is a tuple (as sometimes provided by Gradio), take the first element if isinstance(image, tuple): print(f"Image is tuple with length: {len(image)}") # Debug print if len(image) > 0 and image[0] is not None: if isinstance(image[0], np.ndarray): image = Image.fromarray(image[0]) else: image = image[0] else: raise ValueError("Invalid image tuple provided") # If image is a numpy array, convert to PIL Image if isinstance(image, np.ndarray): image = Image.fromarray(image) # If image is a path string, open it elif isinstance(image, str): image = Image.open(image) print(f"Image type after conversion: {type(image)}") # Debug print # Ensure image is in PIL Image format if not isinstance(image, Image.Image): raise ValueError(f"Input must be a PIL Image, numpy array, or valid image path. Got {type(image)}") # Convert image to RGB if it's in RGBA mode if image.mode == 'RGBA': image = image.convert('RGB') buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode('utf-8') except Exception as e: print(f"Encode error details: {str(e)}") # Debug print raise def analyze_image(image): client = OpenAI(api_key=OPENAI_API_KEY) base64_image = encode_image_to_base64(image) messages = [ { "role": "user", "content": [ { "type": "text", "text": """Your task is to determine if the image is surprising or not surprising. if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'. Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising. Provide the response as a JSON with the following structure: { "label": "[surprising OR not surprising]", "element": "[element]", "rating": [1-5] }""" }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] } ] response = client.chat.completions.create( model="gpt-4o-mini", messages=messages, max_tokens=100, temperature=0.1, response_format={ "type": "json_object" } ) return response.choices[0].message.content def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([1.0, 0.0, 0.0, 0.5]) if len(mask.shape) == 4: mask = mask[0, 0] mask_image = np.zeros((*mask.shape, 4), dtype=np.float32) mask_image[mask > 0] = color ax.imshow(mask_image) def process_image_detection(image, target_label, surprise_rating): # Handle different image input types if isinstance(image, tuple): if len(image) > 0 and image[0] is not None: image = Image.fromarray(image[0]) else: raise ValueError("Invalid image tuple provided") elif isinstance(image, np.ndarray): image = Image.fromarray(image) elif isinstance(image, str): image = Image.open(image) # Ensure image is in PIL Image format if not isinstance(image, Image.Image): raise ValueError("Input must be a PIL Image, numpy array, or valid image path") # Ensure image is in RGB mode if image.mode != 'RGB': image = image.convert('RGB') device = "cuda" if torch.cuda.is_available() else "cpu" # Get original image DPI and size original_dpi = image.info.get('dpi', (72, 72)) original_size = image.size # Calculate relative font size based on image dimensions base_fontsize = min(original_size) / 40 owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16") owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device) sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base") sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device) image_np = np.array(image) inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device) with torch.no_grad(): outputs = owlv2_model(**inputs) target_sizes = torch.tensor([image.size[::-1]]).to(device) results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0] dpi = 300 figsize = (original_size[0] / dpi, original_size[1] / dpi) fig = plt.figure(figsize=figsize, dpi=dpi) ax = plt.Axes(fig, [0., 0., 1., 1.]) fig.add_axes(ax) plt.imshow(image) scores = results["scores"] if len(scores) > 0: max_score_idx = scores.argmax().item() max_score = scores[max_score_idx].item() if max_score > 0.2: box = results["boxes"][max_score_idx].cpu().numpy() sam_inputs = sam_processor( image, input_boxes=[[[box[0], box[1], box[2], box[3]]]], return_tensors="pt" ).to(device) with torch.no_grad(): sam_outputs = sam_model(**sam_inputs) masks = sam_processor.image_processor.post_process_masks( sam_outputs.pred_masks.cpu(), sam_inputs["original_sizes"].cpu(), sam_inputs["reshaped_input_sizes"].cpu() ) mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0] show_mask(mask, ax=ax) # Draw rectangle with increased line width rect = patches.Rectangle( (box[0], box[1]), box[2] - box[0], box[3] - box[1], linewidth=max(2, min(original_size) / 500), edgecolor='red', facecolor='none' ) ax.add_patch(rect) # Add confidence score with improved visibility plt.text( box[0], box[1] - base_fontsize, f'{max_score:.2f}', color='red', fontsize=base_fontsize, fontweight='bold', bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2) ) # Add label and rating with improved visibility plt.text( box[2] + base_fontsize / 2, box[1], f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}', color='red', fontsize=base_fontsize, fontweight='bold', bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2), verticalalignment='bottom' ) plt.axis('off') # Save with high DPI buf = io.BytesIO() plt.savefig(buf, format='png', dpi=dpi, bbox_inches='tight', pad_inches=0, metadata={'dpi': original_dpi}) buf.seek(0) plt.close() # Process final image output_image = Image.open(buf) output_image = output_image.resize(original_size, Image.Resampling.LANCZOS) final_buf = io.BytesIO() output_image.save(final_buf, format='PNG', dpi=original_dpi) final_buf.seek(0) return final_buf def process_and_analyze(image): if image is None: return None, "Please upload an image first." print(f"Initial image type: {type(image)}") # Debug print if OPENAI_API_KEY is None: return None, "OpenAI API key not found in environment variables." try: # Convert the image to PIL format if needed if isinstance(image, tuple): print(f"Image is tuple, length: {len(image)}") # Debug print if len(image) > 0 and image[0] is not None: if isinstance(image[0], np.ndarray): image = Image.fromarray(image[0]) else: print(f"First element type: {type(image[0])}") # Debug print image = image[0] else: return None, "Invalid image format provided" elif isinstance(image, np.ndarray): image = Image.fromarray(image) elif isinstance(image, str): image = Image.open(image) print(f"Image type after conversion: {type(image)}") # Debug print if not isinstance(image, Image.Image): return None, f"Invalid image format: {type(image)}" # Ensure image is in RGB mode if image.mode != 'RGB': image = image.convert('RGB') # Analyze image print("Starting GPT analysis...") # Debug print gpt_response = analyze_image(image) print(f"GPT response: {gpt_response}") # Debug print try: response_data = json.loads(gpt_response) except json.JSONDecodeError: return None, "Error: Invalid response format from GPT" if not all(key in response_data for key in ["label", "element", "rating"]): return None, "Error: Missing required fields in analysis response" print(f"Response data: {response_data}") # Debug print if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na": try: print("Starting image detection...") # Debug print result_buf = process_image_detection(image, response_data["element"], response_data["rating"]) result_image = Image.open(result_buf) analysis_text = ( f"Label: {response_data['label']}\n" f"Element: {response_data['element']}\n" f"Rating: {response_data['rating']}/5" ) return result_image, analysis_text except Exception as detection_error: print(f"Detection error details: {str(detection_error)}") # Debug print return None, f"Error in image detection processing: {str(detection_error)}" else: return image, "Not Surprising" except Exception as e: error_type = type(e).__name__ error_msg = str(e) detailed_error = f"Error ({error_type}): {error_msg}" print(detailed_error) # Debug print return None, f"Error processing image: {error_msg}" # Create Gradio interface def create_interface(): with gr.Blocks() as demo: gr.Markdown("# Image Surprise Analysis") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Upload Image") analyze_btn = gr.Button("Analyze Image") with gr.Column(): output_image = gr.Image(label="Processed Image") output_text = gr.Textbox(label="Analysis Results") analyze_btn.click( fn=process_and_analyze, inputs=[input_image], outputs=[output_image, output_text] ) return demo if __name__ == "__main__": demo = create_interface() demo.launch()