Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,32 +20,45 @@ OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
|
20 |
|
21 |
|
22 |
def encode_image_to_base64(image):
|
23 |
-
|
24 |
-
if isinstance(image, tuple):
|
25 |
-
if len(image) > 0 and image[0] is not None:
|
26 |
-
image = image[0]
|
27 |
-
else:
|
28 |
-
raise ValueError("Invalid image tuple provided")
|
29 |
-
|
30 |
-
# If image is a numpy array, convert to PIL Image
|
31 |
-
if isinstance(image, np.ndarray):
|
32 |
-
image = Image.fromarray(image)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
if image.mode == 'RGBA':
|
44 |
-
image = image.convert('RGB')
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def analyze_image(image):
|
51 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
@@ -244,14 +257,21 @@ def process_and_analyze(image):
|
|
244 |
if image is None:
|
245 |
return None, "Please upload an image first."
|
246 |
|
|
|
|
|
247 |
if OPENAI_API_KEY is None:
|
248 |
return None, "OpenAI API key not found in environment variables."
|
249 |
|
250 |
try:
|
251 |
# Convert the image to PIL format if needed
|
252 |
if isinstance(image, tuple):
|
|
|
253 |
if len(image) > 0 and image[0] is not None:
|
254 |
-
|
|
|
|
|
|
|
|
|
255 |
else:
|
256 |
return None, "Invalid image format provided"
|
257 |
elif isinstance(image, np.ndarray):
|
@@ -259,15 +279,19 @@ def process_and_analyze(image):
|
|
259 |
elif isinstance(image, str):
|
260 |
image = Image.open(image)
|
261 |
|
|
|
|
|
262 |
if not isinstance(image, Image.Image):
|
263 |
-
return None, "Invalid image format"
|
264 |
|
265 |
# Ensure image is in RGB mode
|
266 |
if image.mode != 'RGB':
|
267 |
image = image.convert('RGB')
|
268 |
|
269 |
# Analyze image
|
|
|
270 |
gpt_response = analyze_image(image)
|
|
|
271 |
|
272 |
try:
|
273 |
response_data = json.loads(gpt_response)
|
@@ -277,8 +301,11 @@ def process_and_analyze(image):
|
|
277 |
if not all(key in response_data for key in ["label", "element", "rating"]):
|
278 |
return None, "Error: Missing required fields in analysis response"
|
279 |
|
|
|
|
|
280 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
281 |
try:
|
|
|
282 |
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
|
283 |
result_image = Image.open(result_buf)
|
284 |
analysis_text = (
|
@@ -288,6 +315,7 @@ def process_and_analyze(image):
|
|
288 |
)
|
289 |
return result_image, analysis_text
|
290 |
except Exception as detection_error:
|
|
|
291 |
return None, f"Error in image detection processing: {str(detection_error)}"
|
292 |
else:
|
293 |
return image, "Not Surprising"
|
@@ -296,10 +324,7 @@ def process_and_analyze(image):
|
|
296 |
error_type = type(e).__name__
|
297 |
error_msg = str(e)
|
298 |
detailed_error = f"Error ({error_type}): {error_msg}"
|
299 |
-
|
300 |
-
# Log the error (you might want to add proper logging)
|
301 |
-
print(detailed_error)
|
302 |
-
|
303 |
return None, f"Error processing image: {error_msg}"
|
304 |
|
305 |
|
|
|
20 |
|
21 |
|
22 |
def encode_image_to_base64(image):
|
23 |
+
print(f"Encode image type: {type(image)}") # Debug print
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
try:
|
26 |
+
# If image is a tuple (as sometimes provided by Gradio), take the first element
|
27 |
+
if isinstance(image, tuple):
|
28 |
+
print(f"Image is tuple with length: {len(image)}") # Debug print
|
29 |
+
if len(image) > 0 and image[0] is not None:
|
30 |
+
if isinstance(image[0], np.ndarray):
|
31 |
+
image = Image.fromarray(image[0])
|
32 |
+
else:
|
33 |
+
image = image[0]
|
34 |
+
else:
|
35 |
+
raise ValueError("Invalid image tuple provided")
|
36 |
|
37 |
+
# If image is a numpy array, convert to PIL Image
|
38 |
+
if isinstance(image, np.ndarray):
|
39 |
+
image = Image.fromarray(image)
|
40 |
+
|
41 |
+
# If image is a path string, open it
|
42 |
+
elif isinstance(image, str):
|
43 |
+
image = Image.open(image)
|
44 |
|
45 |
+
print(f"Image type after conversion: {type(image)}") # Debug print
|
|
|
|
|
46 |
|
47 |
+
# Ensure image is in PIL Image format
|
48 |
+
if not isinstance(image, Image.Image):
|
49 |
+
raise ValueError(f"Input must be a PIL Image, numpy array, or valid image path. Got {type(image)}")
|
50 |
+
|
51 |
+
# Convert image to RGB if it's in RGBA mode
|
52 |
+
if image.mode == 'RGBA':
|
53 |
+
image = image.convert('RGB')
|
54 |
+
|
55 |
+
buffered = io.BytesIO()
|
56 |
+
image.save(buffered, format="PNG")
|
57 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Encode error details: {str(e)}") # Debug print
|
60 |
+
raise
|
61 |
+
|
62 |
|
63 |
def analyze_image(image):
|
64 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
|
|
257 |
if image is None:
|
258 |
return None, "Please upload an image first."
|
259 |
|
260 |
+
print(f"Initial image type: {type(image)}") # Debug print
|
261 |
+
|
262 |
if OPENAI_API_KEY is None:
|
263 |
return None, "OpenAI API key not found in environment variables."
|
264 |
|
265 |
try:
|
266 |
# Convert the image to PIL format if needed
|
267 |
if isinstance(image, tuple):
|
268 |
+
print(f"Image is tuple, length: {len(image)}") # Debug print
|
269 |
if len(image) > 0 and image[0] is not None:
|
270 |
+
if isinstance(image[0], np.ndarray):
|
271 |
+
image = Image.fromarray(image[0])
|
272 |
+
else:
|
273 |
+
print(f"First element type: {type(image[0])}") # Debug print
|
274 |
+
image = image[0]
|
275 |
else:
|
276 |
return None, "Invalid image format provided"
|
277 |
elif isinstance(image, np.ndarray):
|
|
|
279 |
elif isinstance(image, str):
|
280 |
image = Image.open(image)
|
281 |
|
282 |
+
print(f"Image type after conversion: {type(image)}") # Debug print
|
283 |
+
|
284 |
if not isinstance(image, Image.Image):
|
285 |
+
return None, f"Invalid image format: {type(image)}"
|
286 |
|
287 |
# Ensure image is in RGB mode
|
288 |
if image.mode != 'RGB':
|
289 |
image = image.convert('RGB')
|
290 |
|
291 |
# Analyze image
|
292 |
+
print("Starting GPT analysis...") # Debug print
|
293 |
gpt_response = analyze_image(image)
|
294 |
+
print(f"GPT response: {gpt_response}") # Debug print
|
295 |
|
296 |
try:
|
297 |
response_data = json.loads(gpt_response)
|
|
|
301 |
if not all(key in response_data for key in ["label", "element", "rating"]):
|
302 |
return None, "Error: Missing required fields in analysis response"
|
303 |
|
304 |
+
print(f"Response data: {response_data}") # Debug print
|
305 |
+
|
306 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
307 |
try:
|
308 |
+
print("Starting image detection...") # Debug print
|
309 |
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
|
310 |
result_image = Image.open(result_buf)
|
311 |
analysis_text = (
|
|
|
315 |
)
|
316 |
return result_image, analysis_text
|
317 |
except Exception as detection_error:
|
318 |
+
print(f"Detection error details: {str(detection_error)}") # Debug print
|
319 |
return None, f"Error in image detection processing: {str(detection_error)}"
|
320 |
else:
|
321 |
return image, "Not Surprising"
|
|
|
324 |
error_type = type(e).__name__
|
325 |
error_msg = str(e)
|
326 |
detailed_error = f"Error ({error_type}): {error_msg}"
|
327 |
+
print(detailed_error) # Debug print
|
|
|
|
|
|
|
328 |
return None, f"Error processing image: {error_msg}"
|
329 |
|
330 |
|