Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,32 +20,45 @@ OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
|
| 20 |
|
| 21 |
|
| 22 |
def encode_image_to_base64(image):
|
| 23 |
-
|
| 24 |
-
if isinstance(image, tuple):
|
| 25 |
-
if len(image) > 0 and image[0] is not None:
|
| 26 |
-
image = image[0]
|
| 27 |
-
else:
|
| 28 |
-
raise ValueError("Invalid image tuple provided")
|
| 29 |
-
|
| 30 |
-
# If image is a numpy array, convert to PIL Image
|
| 31 |
-
if isinstance(image, np.ndarray):
|
| 32 |
-
image = Image.fromarray(image)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
if image.mode == 'RGBA':
|
| 44 |
-
image = image.convert('RGB')
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def analyze_image(image):
|
| 51 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
|
@@ -244,14 +257,21 @@ def process_and_analyze(image):
|
|
| 244 |
if image is None:
|
| 245 |
return None, "Please upload an image first."
|
| 246 |
|
|
|
|
|
|
|
| 247 |
if OPENAI_API_KEY is None:
|
| 248 |
return None, "OpenAI API key not found in environment variables."
|
| 249 |
|
| 250 |
try:
|
| 251 |
# Convert the image to PIL format if needed
|
| 252 |
if isinstance(image, tuple):
|
|
|
|
| 253 |
if len(image) > 0 and image[0] is not None:
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
else:
|
| 256 |
return None, "Invalid image format provided"
|
| 257 |
elif isinstance(image, np.ndarray):
|
|
@@ -259,15 +279,19 @@ def process_and_analyze(image):
|
|
| 259 |
elif isinstance(image, str):
|
| 260 |
image = Image.open(image)
|
| 261 |
|
|
|
|
|
|
|
| 262 |
if not isinstance(image, Image.Image):
|
| 263 |
-
return None, "Invalid image format"
|
| 264 |
|
| 265 |
# Ensure image is in RGB mode
|
| 266 |
if image.mode != 'RGB':
|
| 267 |
image = image.convert('RGB')
|
| 268 |
|
| 269 |
# Analyze image
|
|
|
|
| 270 |
gpt_response = analyze_image(image)
|
|
|
|
| 271 |
|
| 272 |
try:
|
| 273 |
response_data = json.loads(gpt_response)
|
|
@@ -277,8 +301,11 @@ def process_and_analyze(image):
|
|
| 277 |
if not all(key in response_data for key in ["label", "element", "rating"]):
|
| 278 |
return None, "Error: Missing required fields in analysis response"
|
| 279 |
|
|
|
|
|
|
|
| 280 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
| 281 |
try:
|
|
|
|
| 282 |
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
|
| 283 |
result_image = Image.open(result_buf)
|
| 284 |
analysis_text = (
|
|
@@ -288,6 +315,7 @@ def process_and_analyze(image):
|
|
| 288 |
)
|
| 289 |
return result_image, analysis_text
|
| 290 |
except Exception as detection_error:
|
|
|
|
| 291 |
return None, f"Error in image detection processing: {str(detection_error)}"
|
| 292 |
else:
|
| 293 |
return image, "Not Surprising"
|
|
@@ -296,10 +324,7 @@ def process_and_analyze(image):
|
|
| 296 |
error_type = type(e).__name__
|
| 297 |
error_msg = str(e)
|
| 298 |
detailed_error = f"Error ({error_type}): {error_msg}"
|
| 299 |
-
|
| 300 |
-
# Log the error (you might want to add proper logging)
|
| 301 |
-
print(detailed_error)
|
| 302 |
-
|
| 303 |
return None, f"Error processing image: {error_msg}"
|
| 304 |
|
| 305 |
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def encode_image_to_base64(image):
|
| 23 |
+
print(f"Encode image type: {type(image)}") # Debug print
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
try:
|
| 26 |
+
# If image is a tuple (as sometimes provided by Gradio), take the first element
|
| 27 |
+
if isinstance(image, tuple):
|
| 28 |
+
print(f"Image is tuple with length: {len(image)}") # Debug print
|
| 29 |
+
if len(image) > 0 and image[0] is not None:
|
| 30 |
+
if isinstance(image[0], np.ndarray):
|
| 31 |
+
image = Image.fromarray(image[0])
|
| 32 |
+
else:
|
| 33 |
+
image = image[0]
|
| 34 |
+
else:
|
| 35 |
+
raise ValueError("Invalid image tuple provided")
|
| 36 |
|
| 37 |
+
# If image is a numpy array, convert to PIL Image
|
| 38 |
+
if isinstance(image, np.ndarray):
|
| 39 |
+
image = Image.fromarray(image)
|
| 40 |
+
|
| 41 |
+
# If image is a path string, open it
|
| 42 |
+
elif isinstance(image, str):
|
| 43 |
+
image = Image.open(image)
|
| 44 |
|
| 45 |
+
print(f"Image type after conversion: {type(image)}") # Debug print
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# Ensure image is in PIL Image format
|
| 48 |
+
if not isinstance(image, Image.Image):
|
| 49 |
+
raise ValueError(f"Input must be a PIL Image, numpy array, or valid image path. Got {type(image)}")
|
| 50 |
+
|
| 51 |
+
# Convert image to RGB if it's in RGBA mode
|
| 52 |
+
if image.mode == 'RGBA':
|
| 53 |
+
image = image.convert('RGB')
|
| 54 |
+
|
| 55 |
+
buffered = io.BytesIO()
|
| 56 |
+
image.save(buffered, format="PNG")
|
| 57 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Encode error details: {str(e)}") # Debug print
|
| 60 |
+
raise
|
| 61 |
+
|
| 62 |
|
| 63 |
def analyze_image(image):
|
| 64 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
|
|
|
| 257 |
if image is None:
|
| 258 |
return None, "Please upload an image first."
|
| 259 |
|
| 260 |
+
print(f"Initial image type: {type(image)}") # Debug print
|
| 261 |
+
|
| 262 |
if OPENAI_API_KEY is None:
|
| 263 |
return None, "OpenAI API key not found in environment variables."
|
| 264 |
|
| 265 |
try:
|
| 266 |
# Convert the image to PIL format if needed
|
| 267 |
if isinstance(image, tuple):
|
| 268 |
+
print(f"Image is tuple, length: {len(image)}") # Debug print
|
| 269 |
if len(image) > 0 and image[0] is not None:
|
| 270 |
+
if isinstance(image[0], np.ndarray):
|
| 271 |
+
image = Image.fromarray(image[0])
|
| 272 |
+
else:
|
| 273 |
+
print(f"First element type: {type(image[0])}") # Debug print
|
| 274 |
+
image = image[0]
|
| 275 |
else:
|
| 276 |
return None, "Invalid image format provided"
|
| 277 |
elif isinstance(image, np.ndarray):
|
|
|
|
| 279 |
elif isinstance(image, str):
|
| 280 |
image = Image.open(image)
|
| 281 |
|
| 282 |
+
print(f"Image type after conversion: {type(image)}") # Debug print
|
| 283 |
+
|
| 284 |
if not isinstance(image, Image.Image):
|
| 285 |
+
return None, f"Invalid image format: {type(image)}"
|
| 286 |
|
| 287 |
# Ensure image is in RGB mode
|
| 288 |
if image.mode != 'RGB':
|
| 289 |
image = image.convert('RGB')
|
| 290 |
|
| 291 |
# Analyze image
|
| 292 |
+
print("Starting GPT analysis...") # Debug print
|
| 293 |
gpt_response = analyze_image(image)
|
| 294 |
+
print(f"GPT response: {gpt_response}") # Debug print
|
| 295 |
|
| 296 |
try:
|
| 297 |
response_data = json.loads(gpt_response)
|
|
|
|
| 301 |
if not all(key in response_data for key in ["label", "element", "rating"]):
|
| 302 |
return None, "Error: Missing required fields in analysis response"
|
| 303 |
|
| 304 |
+
print(f"Response data: {response_data}") # Debug print
|
| 305 |
+
|
| 306 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
| 307 |
try:
|
| 308 |
+
print("Starting image detection...") # Debug print
|
| 309 |
result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
|
| 310 |
result_image = Image.open(result_buf)
|
| 311 |
analysis_text = (
|
|
|
|
| 315 |
)
|
| 316 |
return result_image, analysis_text
|
| 317 |
except Exception as detection_error:
|
| 318 |
+
print(f"Detection error details: {str(detection_error)}") # Debug print
|
| 319 |
return None, f"Error in image detection processing: {str(detection_error)}"
|
| 320 |
else:
|
| 321 |
return image, "Not Surprising"
|
|
|
|
| 324 |
error_type = type(e).__name__
|
| 325 |
error_msg = str(e)
|
| 326 |
detailed_error = f"Error ({error_type}): {error_msg}"
|
| 327 |
+
print(detailed_error) # Debug print
|
|
|
|
|
|
|
|
|
|
| 328 |
return None, f"Error processing image: {error_msg}"
|
| 329 |
|
| 330 |
|