File size: 4,119 Bytes
13d7bed
 
 
5e351cb
13d7bed
5e351cb
 
13d7bed
 
 
 
 
 
 
 
 
 
 
 
 
5e351cb
13d7bed
5e351cb
 
 
 
13d7bed
5e351cb
 
 
 
fcba7cb
5e351cb
 
 
 
 
fcba7cb
5e351cb
13d7bed
5e351cb
1f43f91
5e351cb
13d7bed
5e351cb
 
 
 
 
 
 
13d7bed
 
 
5e351cb
 
13d7bed
 
5e351cb
13d7bed
 
 
 
5e351cb
13d7bed
 
 
 
 
 
 
 
 
fcba7cb
 
6cd7102
fcba7cb
 
 
 
 
5e351cb
 
 
 
 
13d7bed
 
 
 
 
b7b543a
13d7bed
 
b7b543a
13d7bed
 
 
 
6ab9894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d7bed
 
6ab9894
13d7bed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
from PIL import Image
import requests
import openai
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
                          AutoProcessor, AutoModelForMaskGeneration,
                          BlipProcessor, BlipForConditionalGeneration)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import base64
import io
import numpy as np
import gradio as gr
import json
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
openai.api_key = OPENAI_API_KEY

def generate_image_caption(image):
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
    model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to(device)

    inputs = processor(image, return_tensors='pt').to(device)
    out = model.generate(**inputs)
    caption = processor.decode(out[0], skip_special_tokens=True)
    return caption

def analyze_caption(caption):
    messages = [
        {
            "role": "user",
            "content": f"""Your task is to determine if the following image description is surprising or not surprising.

Description: "{caption}"

If the description is surprising, determine which element, figure, or object is making it surprising and write it only in one sentence with no more than 6 words; otherwise, write 'NA'.

Also, rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.

Provide the response as a JSON with the following structure:
{{
    "label": "[surprising OR not surprising]",
    "element": "[element]",
    "rating": [1-5]
}}
"""
        }
    ]

    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=messages,
        max_tokens=100,
        temperature=0.1
    )

    return response.choices[0].message.content

# The rest of your functions (process_image_detection, show_mask, etc.) remain the same

def process_and_analyze(image):
    if image is None:
        return None, "Please upload an image first."

    if OPENAI_API_KEY is None:
        return None, "OpenAI API key not found in environment variables."

    try:
        # Handle different input types
        if isinstance(image, tuple):
            image = image[0]  # Take the first element if it's a tuple
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
        if not isinstance(image, Image.Image):
            raise ValueError("Invalid image format")

        # Generate caption
        caption = generate_image_caption(image)

        # Analyze caption
        gpt_response = analyze_caption(caption)
        response_data = json.loads(gpt_response)

        if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
            result_buf = process_image_detection(image, response_data["element"], response_data["rating"])
            result_image = Image.open(result_buf)
            analysis_text = f"Label: {response_data['label']}\nElement: {response_data['element']}\nRating: {response_data['rating']}/5"
            return result_image, analysis_text
        else:
            return image, "Not Surprising"

    except Exception as e:
        return None, f"Error processing image: {str(e)}"

# Create Gradio interface
def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Image Surprise Analysis")

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Upload Image")
                analyze_btn = gr.Button("Analyze Image")

            with gr.Column():
                output_image = gr.Image(label="Processed Image")
                output_text = gr.Textbox(label="Analysis Results")

        analyze_btn.click(
            fn=process_and_analyze,
            inputs=[input_image],
            outputs=[output_image, output_text]
        )

    return demo


if __name__ == "__main__":
    demo = create_interface()
    demo.launch()