Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
import requests
|
4 |
-
|
5 |
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
|
6 |
-
AutoProcessor, AutoModelForMaskGeneration
|
|
|
7 |
import matplotlib.pyplot as plt
|
8 |
import matplotlib.patches as patches
|
9 |
import base64
|
@@ -17,199 +18,50 @@ from dotenv import load_dotenv
|
|
17 |
# Load environment variables
|
18 |
load_dotenv()
|
19 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
|
|
20 |
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
if not isinstance(image, Image.Image):
|
33 |
-
raise ValueError("Input must be a PIL Image, numpy array, or tuple containing an image")
|
34 |
|
35 |
-
|
36 |
-
image.save(buffered, format="PNG")
|
37 |
-
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
38 |
|
|
|
39 |
|
40 |
-
|
41 |
-
client = OpenAI(api_key=OPENAI_API_KEY)
|
42 |
-
base64_image = encode_image_to_base64(image)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
if the image is surprising, determine which element, figure or object in the image is making the image surprising and write it only in one sentence with no more then 6 words, otherwise, write 'NA'.
|
52 |
-
Also rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
|
53 |
-
Provide the response as a JSON with the following structure:
|
54 |
-
{
|
55 |
-
"label": "[surprising OR not surprising]",
|
56 |
-
"element": "[element]",
|
57 |
-
"rating": [1-5]
|
58 |
-
}"""
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"type": "image_url",
|
62 |
-
"image_url": {
|
63 |
-
"url": f"data:image/jpeg;base64,{base64_image}"
|
64 |
-
}
|
65 |
-
}
|
66 |
-
]
|
67 |
}
|
68 |
]
|
69 |
|
70 |
-
response =
|
71 |
-
model="gpt-
|
72 |
messages=messages,
|
73 |
max_tokens=100,
|
74 |
-
temperature=0.1
|
75 |
-
response_format={
|
76 |
-
"type": "json_object"
|
77 |
-
}
|
78 |
)
|
79 |
|
80 |
return response.choices[0].message.content
|
81 |
|
82 |
-
|
83 |
-
def show_mask(mask, ax, random_color=False):
|
84 |
-
if random_color:
|
85 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
86 |
-
else:
|
87 |
-
color = np.array([1.0, 0.0, 0.0, 0.5])
|
88 |
-
|
89 |
-
if len(mask.shape) == 4:
|
90 |
-
mask = mask[0, 0]
|
91 |
-
|
92 |
-
mask_image = np.zeros((*mask.shape, 4), dtype=np.float32)
|
93 |
-
mask_image[mask > 0] = color
|
94 |
-
|
95 |
-
ax.imshow(mask_image)
|
96 |
-
|
97 |
-
|
98 |
-
def process_image_detection(image, target_label, surprise_rating):
|
99 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
100 |
-
|
101 |
-
# Get original image DPI and size
|
102 |
-
original_dpi = image.info.get('dpi', (72, 72))
|
103 |
-
original_size = image.size
|
104 |
-
|
105 |
-
# Calculate relative font size based on image dimensions
|
106 |
-
base_fontsize = min(original_size) / 40 # Adjust this divisor to change overall font size
|
107 |
-
|
108 |
-
owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
109 |
-
owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
110 |
-
|
111 |
-
sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base")
|
112 |
-
sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device)
|
113 |
-
|
114 |
-
image_np = np.array(image)
|
115 |
-
|
116 |
-
inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device)
|
117 |
-
with torch.no_grad():
|
118 |
-
outputs = owlv2_model(**inputs)
|
119 |
-
|
120 |
-
target_sizes = torch.tensor([image.size[::-1]]).to(device)
|
121 |
-
results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
|
122 |
-
|
123 |
-
dpi = 300 # Increased DPI for better text rendering
|
124 |
-
figsize = (original_size[0] / dpi, original_size[1] / dpi)
|
125 |
-
fig = plt.figure(figsize=figsize, dpi=dpi)
|
126 |
-
|
127 |
-
ax = plt.Axes(fig, [0., 0., 1., 1.])
|
128 |
-
fig.add_axes(ax)
|
129 |
-
|
130 |
-
plt.imshow(image)
|
131 |
-
|
132 |
-
scores = results["scores"]
|
133 |
-
if len(scores) > 0:
|
134 |
-
max_score_idx = scores.argmax().item()
|
135 |
-
max_score = scores[max_score_idx].item()
|
136 |
-
|
137 |
-
if max_score > 0.2:
|
138 |
-
box = results["boxes"][max_score_idx].cpu().numpy()
|
139 |
-
|
140 |
-
sam_inputs = sam_processor(
|
141 |
-
image,
|
142 |
-
input_boxes=[[[box[0], box[1], box[2], box[3]]]],
|
143 |
-
return_tensors="pt"
|
144 |
-
).to(device)
|
145 |
-
|
146 |
-
with torch.no_grad():
|
147 |
-
sam_outputs = sam_model(**sam_inputs)
|
148 |
-
|
149 |
-
masks = sam_processor.image_processor.post_process_masks(
|
150 |
-
sam_outputs.pred_masks.cpu(),
|
151 |
-
sam_inputs["original_sizes"].cpu(),
|
152 |
-
sam_inputs["reshaped_input_sizes"].cpu()
|
153 |
-
)
|
154 |
-
|
155 |
-
mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0]
|
156 |
-
show_mask(mask, ax=ax)
|
157 |
-
|
158 |
-
# Draw rectangle with increased line width
|
159 |
-
rect = patches.Rectangle(
|
160 |
-
(box[0], box[1]),
|
161 |
-
box[2] - box[0],
|
162 |
-
box[3] - box[1],
|
163 |
-
linewidth=max(2, min(original_size) / 500), # Scale line width with image size
|
164 |
-
edgecolor='red',
|
165 |
-
facecolor='none'
|
166 |
-
)
|
167 |
-
ax.add_patch(rect)
|
168 |
-
|
169 |
-
# Add confidence score with improved visibility
|
170 |
-
plt.text(
|
171 |
-
box[0], box[1] - base_fontsize,
|
172 |
-
f'{max_score:.2f}',
|
173 |
-
color='red',
|
174 |
-
fontsize=base_fontsize,
|
175 |
-
fontweight='bold',
|
176 |
-
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2)
|
177 |
-
)
|
178 |
-
|
179 |
-
# Add label and rating with improved visibility
|
180 |
-
plt.text(
|
181 |
-
box[2] + base_fontsize / 2, box[1],
|
182 |
-
f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}',
|
183 |
-
color='red',
|
184 |
-
fontsize=base_fontsize,
|
185 |
-
fontweight='bold',
|
186 |
-
bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2),
|
187 |
-
verticalalignment='bottom'
|
188 |
-
)
|
189 |
-
|
190 |
-
plt.axis('off')
|
191 |
-
|
192 |
-
# Save with high DPI
|
193 |
-
buf = io.BytesIO()
|
194 |
-
plt.savefig(buf,
|
195 |
-
format='png',
|
196 |
-
dpi=dpi,
|
197 |
-
bbox_inches='tight',
|
198 |
-
pad_inches=0,
|
199 |
-
metadata={'dpi': original_dpi})
|
200 |
-
buf.seek(0)
|
201 |
-
plt.close()
|
202 |
-
|
203 |
-
# Process final image
|
204 |
-
output_image = Image.open(buf)
|
205 |
-
output_image = output_image.resize(original_size, Image.Resampling.LANCZOS)
|
206 |
-
|
207 |
-
final_buf = io.BytesIO()
|
208 |
-
output_image.save(final_buf, format='PNG', dpi=original_dpi)
|
209 |
-
final_buf.seek(0)
|
210 |
-
|
211 |
-
return final_buf
|
212 |
-
|
213 |
|
214 |
def process_and_analyze(image):
|
215 |
if image is None:
|
@@ -227,8 +79,11 @@ def process_and_analyze(image):
|
|
227 |
if not isinstance(image, Image.Image):
|
228 |
raise ValueError("Invalid image format")
|
229 |
|
230 |
-
#
|
231 |
-
|
|
|
|
|
|
|
232 |
response_data = json.loads(gpt_response)
|
233 |
|
234 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
@@ -242,29 +97,7 @@ def process_and_analyze(image):
|
|
242 |
except Exception as e:
|
243 |
return None, f"Error processing image: {str(e)}"
|
244 |
|
245 |
-
|
246 |
-
# Create Gradio interface
|
247 |
-
def create_interface():
|
248 |
-
with gr.Blocks() as demo:
|
249 |
-
gr.Markdown("# Image Surprise Analysis")
|
250 |
-
|
251 |
-
with gr.Row():
|
252 |
-
with gr.Column():
|
253 |
-
input_image = gr.Image(label="Upload Image")
|
254 |
-
analyze_btn = gr.Button("Analyze Image")
|
255 |
-
|
256 |
-
with gr.Column():
|
257 |
-
output_image = gr.Image(label="Processed Image")
|
258 |
-
output_text = gr.Textbox(label="Analysis Results")
|
259 |
-
|
260 |
-
analyze_btn.click(
|
261 |
-
fn=process_and_analyze,
|
262 |
-
inputs=[input_image],
|
263 |
-
outputs=[output_image, output_text]
|
264 |
-
)
|
265 |
-
|
266 |
-
return demo
|
267 |
-
|
268 |
|
269 |
if __name__ == "__main__":
|
270 |
demo = create_interface()
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
import requests
|
4 |
+
import openai
|
5 |
from transformers import (Owlv2Processor, Owlv2ForObjectDetection,
|
6 |
+
AutoProcessor, AutoModelForMaskGeneration,
|
7 |
+
BlipProcessor, BlipForConditionalGeneration)
|
8 |
import matplotlib.pyplot as plt
|
9 |
import matplotlib.patches as patches
|
10 |
import base64
|
|
|
18 |
# Load environment variables
|
19 |
load_dotenv()
|
20 |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
21 |
+
openai.api_key = OPENAI_API_KEY
|
22 |
|
23 |
+
def generate_image_caption(image):
|
24 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
25 |
+
processor = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
|
26 |
+
model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to(device)
|
27 |
|
28 |
+
inputs = processor(image, return_tensors='pt').to(device)
|
29 |
+
out = model.generate(**inputs)
|
30 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
31 |
+
return caption
|
32 |
|
33 |
+
def analyze_caption(caption):
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "user",
|
37 |
+
"content": f"""Your task is to determine if the following image description is surprising or not surprising.
|
|
|
|
|
38 |
|
39 |
+
Description: "{caption}"
|
|
|
|
|
40 |
|
41 |
+
If the description is surprising, determine which element, figure, or object is making it surprising and write it only in one sentence with no more than 6 words; otherwise, write 'NA'.
|
42 |
|
43 |
+
Also, rate how surprising the image is on a scale of 1-5, where 1 is not surprising at all and 5 is highly surprising.
|
|
|
|
|
44 |
|
45 |
+
Provide the response as a JSON with the following structure:
|
46 |
+
{{
|
47 |
+
"label": "[surprising OR not surprising]",
|
48 |
+
"element": "[element]",
|
49 |
+
"rating": [1-5]
|
50 |
+
}}
|
51 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
]
|
54 |
|
55 |
+
response = openai.ChatCompletion.create(
|
56 |
+
model="gpt-4",
|
57 |
messages=messages,
|
58 |
max_tokens=100,
|
59 |
+
temperature=0.1
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
return response.choices[0].message.content
|
63 |
|
64 |
+
# The rest of your functions (process_image_detection, show_mask, etc.) remain the same
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def process_and_analyze(image):
|
67 |
if image is None:
|
|
|
79 |
if not isinstance(image, Image.Image):
|
80 |
raise ValueError("Invalid image format")
|
81 |
|
82 |
+
# Generate caption
|
83 |
+
caption = generate_image_caption(image)
|
84 |
+
|
85 |
+
# Analyze caption
|
86 |
+
gpt_response = analyze_caption(caption)
|
87 |
response_data = json.loads(gpt_response)
|
88 |
|
89 |
if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na":
|
|
|
97 |
except Exception as e:
|
98 |
return None, f"Error processing image: {str(e)}"
|
99 |
|
100 |
+
# Create Gradio interface remains the same
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if __name__ == "__main__":
|
103 |
demo = create_interface()
|