Spaces:
Running
Running
from threading import Thread | |
import gradio as gr | |
import torch | |
from transformers import PreTrainedModel # for type hint | |
from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer # Moondream | |
from transformers import YolosImageProcessor, YolosForObjectDetection # YOLOS-small-300 | |
# --- Moondream --- # | |
# Moondream does not support the HuggingFace pipeline system, so we have to do it manually | |
moondream_id = "vikhyatk/moondream2" | |
moondream_revision = "2024-04-02" | |
moondream_tokenizer = AutoTokenizer.from_pretrained(moondream_id, revision=moondream_revision) | |
moondream_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained( | |
moondream_id, trust_remote_code=True, revision=moondream_revision | |
) | |
moondream_model.eval() | |
# --- YOLOS --- # | |
yolos_id = "hustvl/yolos-small-300" | |
yolos_processor: YolosImageProcessor = YolosImageProcessor.from_pretrained(yolos_id) | |
yolos_model: YolosForObjectDetection = YolosForObjectDetection.from_pretrained(yolos_id) | |
def answer_question(img, prompt): | |
""" | |
Submits an image and prompt to the Moondream model. | |
:param img: | |
:param prompt: | |
:return: yields the output buffer string | |
""" | |
image_embeds = moondream_model.encode_image(img) | |
streamer = TextIteratorStreamer(moondream_tokenizer, skip_special_tokens=True) | |
thread = Thread( | |
target=moondream_model.answer_question, | |
kwargs={ | |
"image_embeds": image_embeds, | |
"question": prompt, | |
"tokenizer": moondream_tokenizer, | |
"streamer": streamer, | |
}, | |
) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer.strip() | |
def detect_objects(img): | |
inputs = yolos_processor(images=img, return_tensors="pt") | |
outputs = yolos_model(**inputs) | |
target_sizes = torch.tensor([img.size[::-1]]) | |
results = yolos_processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0] | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
print( | |
f"Detected {yolos_model.config.id2label[label.item()]} with confidence " | |
f"{round(score.item(), 3)} at location {box}" | |
) | |
if __name__ == "__main__": | |
with gr.Blocks() as app: | |
gr.Markdown( | |
""" | |
# Food Identifier | |
Final project for IAT 481 at Simon Fraser University, Spring 2024. | |
""" | |
) | |
with gr.Tab("Object Detection"): | |
with gr.Row(): | |
yolos_input = gr.Image() | |
yolos_output = gr.Image() | |
yolos_button = gr.Button("Submit") | |
with gr.Tab("Inference"): | |
with gr.Row(): | |
moon_prompt = gr.Textbox(label="Input", value="Describe this image.") | |
moon_submit = gr.Button("Submit") | |
with gr.Row(): | |
moon_img = gr.Image(label="Image", type="pil") | |
moon_output = gr.TextArea(label="Output") | |
moon_submit.click(answer_question, [moon_img, moon_prompt], moon_output) | |
yolos_button.click(detect_objects, [yolos_input], yolos_output) | |
app.queue().launch() | |