Spaces:
Running
Running
Begin implementing object detection
Browse filesWe're using the 'hustvl/yolos-small-300' for this.
app.py
CHANGED
@@ -1,27 +1,42 @@
|
|
1 |
from threading import Thread
|
2 |
|
3 |
import gradio as gr
|
4 |
-
|
5 |
-
from transformers import
|
|
|
|
|
6 |
|
|
|
7 |
# Moondream does not support the HuggingFace pipeline system, so we have to do it manually
|
8 |
moondream_id = "vikhyatk/moondream2"
|
9 |
moondream_revision = "2024-04-02"
|
10 |
moondream_tokenizer = AutoTokenizer.from_pretrained(moondream_id, revision=moondream_revision)
|
11 |
-
|
12 |
moondream_id, trust_remote_code=True, revision=moondream_revision
|
13 |
)
|
14 |
-
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
streamer = TextIteratorStreamer(moondream_tokenizer, skip_special_tokens=True)
|
20 |
thread = Thread(
|
21 |
-
target=
|
22 |
kwargs={
|
23 |
"image_embeds": image_embeds,
|
24 |
-
"question":
|
25 |
"tokenizer": moondream_tokenizer,
|
26 |
"streamer": streamer,
|
27 |
},
|
@@ -34,6 +49,21 @@ def answer_question(_img, _prompt):
|
|
34 |
yield buffer.strip()
|
35 |
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
if __name__ == "__main__":
|
38 |
with gr.Blocks() as app:
|
39 |
gr.Markdown(
|
@@ -43,13 +73,22 @@ if __name__ == "__main__":
|
|
43 |
Final project for IAT 481 at Simon Fraser University, Spring 2024.
|
44 |
"""
|
45 |
)
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
app.queue().launch()
|
|
|
1 |
from threading import Thread
|
2 |
|
3 |
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from transformers import PreTrainedModel # for type hint
|
6 |
+
from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer # Moondream
|
7 |
+
from transformers import YolosImageProcessor, YolosForObjectDetection # YOLOS-small-300
|
8 |
|
9 |
+
# --- Moondream --- #
|
10 |
# Moondream does not support the HuggingFace pipeline system, so we have to do it manually
|
11 |
moondream_id = "vikhyatk/moondream2"
|
12 |
moondream_revision = "2024-04-02"
|
13 |
moondream_tokenizer = AutoTokenizer.from_pretrained(moondream_id, revision=moondream_revision)
|
14 |
+
moondream_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(
|
15 |
moondream_id, trust_remote_code=True, revision=moondream_revision
|
16 |
)
|
17 |
+
moondream_model.eval()
|
18 |
|
19 |
+
# --- YOLOS --- #
|
20 |
+
yolos_id = "hustvl/yolos-small-300"
|
21 |
+
yolos_processor: YolosImageProcessor = YolosImageProcessor.from_pretrained(yolos_id)
|
22 |
+
yolos_model: YolosForObjectDetection = YolosForObjectDetection.from_pretrained(yolos_id)
|
23 |
|
24 |
+
|
25 |
+
def answer_question(img, prompt):
|
26 |
+
"""
|
27 |
+
Submits an image and prompt to the Moondream model.
|
28 |
+
|
29 |
+
:param img:
|
30 |
+
:param prompt:
|
31 |
+
:return: yields the output buffer string
|
32 |
+
"""
|
33 |
+
image_embeds = moondream_model.encode_image(img)
|
34 |
streamer = TextIteratorStreamer(moondream_tokenizer, skip_special_tokens=True)
|
35 |
thread = Thread(
|
36 |
+
target=moondream_model.answer_question,
|
37 |
kwargs={
|
38 |
"image_embeds": image_embeds,
|
39 |
+
"question": prompt,
|
40 |
"tokenizer": moondream_tokenizer,
|
41 |
"streamer": streamer,
|
42 |
},
|
|
|
49 |
yield buffer.strip()
|
50 |
|
51 |
|
52 |
+
def detect_objects(img):
|
53 |
+
inputs = yolos_processor(images=img, return_tensors="pt")
|
54 |
+
outputs = yolos_model(**inputs)
|
55 |
+
|
56 |
+
target_sizes = torch.tensor([img.size[::-1]])
|
57 |
+
results = yolos_processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0]
|
58 |
+
|
59 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
60 |
+
box = [round(i, 2) for i in box.tolist()]
|
61 |
+
print(
|
62 |
+
f"Detected {yolos_model.config.id2label[label.item()]} with confidence "
|
63 |
+
f"{round(score.item(), 3)} at location {box}"
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
if __name__ == "__main__":
|
68 |
with gr.Blocks() as app:
|
69 |
gr.Markdown(
|
|
|
73 |
Final project for IAT 481 at Simon Fraser University, Spring 2024.
|
74 |
"""
|
75 |
)
|
76 |
+
|
77 |
+
with gr.Tab("Object Detection"):
|
78 |
+
with gr.Row():
|
79 |
+
yolos_input = gr.Image()
|
80 |
+
yolos_output = gr.Image()
|
81 |
+
yolos_button = gr.Button("Submit")
|
82 |
+
|
83 |
+
with gr.Tab("Inference"):
|
84 |
+
with gr.Row():
|
85 |
+
moon_prompt = gr.Textbox(label="Input", value="Describe this image.")
|
86 |
+
moon_submit = gr.Button("Submit")
|
87 |
+
with gr.Row():
|
88 |
+
moon_img = gr.Image(label="Image", type="pil")
|
89 |
+
moon_output = gr.TextArea(label="Output")
|
90 |
+
|
91 |
+
moon_submit.click(answer_question, [moon_img, moon_prompt], moon_output)
|
92 |
+
yolos_button.click(detect_objects, [yolos_input], yolos_output)
|
93 |
|
94 |
app.queue().launch()
|