Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 3,242 Bytes
			
			| 83c71a6 5756dad ada211a 5756dad ada211a 6dafc63 77b3326 83c71a6 ada211a bf22d27 6dafc63 ada211a 77b3326 ada211a 2f92f19 ada211a 83c71a6 ada211a 83c71a6 ada211a 83c71a6 2f92f19 ada211a 5756dad 60a2be3 ada211a 60a2be3 83c71a6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | from threading import Thread
import gradio as gr
import torch
from transformers import PreTrainedModel  # for type hint
from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer  # Moondream
from transformers import YolosImageProcessor, YolosForObjectDetection  # YOLOS-small-300
# --- Moondream --- #
# Moondream does not support the HuggingFace pipeline system, so we have to do it manually
moondream_id = "vikhyatk/moondream2"
moondream_revision = "2024-04-02"
moondream_tokenizer = AutoTokenizer.from_pretrained(moondream_id, revision=moondream_revision)
moondream_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(
    moondream_id, trust_remote_code=True, revision=moondream_revision
)
moondream_model.eval()
# --- YOLOS --- #
yolos_id = "hustvl/yolos-small-300"
yolos_processor: YolosImageProcessor = YolosImageProcessor.from_pretrained(yolos_id)
yolos_model: YolosForObjectDetection = YolosForObjectDetection.from_pretrained(yolos_id)
def answer_question(img, prompt):
    """
    Submits an image and prompt to the Moondream model.
    :param img:
    :param prompt:
    :return: yields the output buffer string
    """
    image_embeds = moondream_model.encode_image(img)
    streamer = TextIteratorStreamer(moondream_tokenizer, skip_special_tokens=True)
    thread = Thread(
        target=moondream_model.answer_question,
        kwargs={
            "image_embeds": image_embeds,
            "question": prompt,
            "tokenizer": moondream_tokenizer,
            "streamer": streamer,
        },
    )
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer.strip()
def detect_objects(img):
    inputs = yolos_processor(images=img, return_tensors="pt")
    outputs = yolos_model(**inputs)
    target_sizes = torch.tensor([img.size[::-1]])
    results = yolos_processor.post_process_object_detection(outputs, threshold=0.7, target_sizes=target_sizes)[0]
    for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
        box = [round(i, 2) for i in box.tolist()]
        print(
            f"Detected {yolos_model.config.id2label[label.item()]} with confidence "
            f"{round(score.item(), 3)} at location {box}"
        )
if __name__ == "__main__":
    with gr.Blocks() as app:
        gr.Markdown(
            """
            # Food Identifier
            Final project for IAT 481 at Simon Fraser University, Spring 2024.
            """
        )
        with gr.Tab("Object Detection"):
            with gr.Row():
                yolos_input = gr.Image()
                yolos_output = gr.Image()
            yolos_button = gr.Button("Submit")
        with gr.Tab("Inference"):
            with gr.Row():
                moon_prompt = gr.Textbox(label="Input", value="Describe this image.")
                moon_submit = gr.Button("Submit")
            with gr.Row():
                moon_img = gr.Image(label="Image", type="pil")
                moon_output = gr.TextArea(label="Output")
        moon_submit.click(answer_question, [moon_img, moon_prompt], moon_output)
        yolos_button.click(detect_objects, [yolos_input], yolos_output)
    app.queue().launch()
 |