Spaces:
Sleeping
Sleeping
File size: 5,861 Bytes
1ee9349 4eab535 4542bfb 4eab535 4542bfb 4eab535 1ee9349 4eab535 1ee9349 4542bfb 4eab535 4542bfb 4eab535 1ee9349 4eab535 1ee9349 4eab535 1ee9349 4eab535 4542bfb 4eab535 1ee9349 4eab535 1ee9349 4542bfb 1ee9349 4eab535 1ee9349 4542bfb 4eab535 4542bfb 4eab535 4542bfb 4eab535 4542bfb 4eab535 4542bfb 4eab535 4542bfb 1ee9349 4542bfb 4eab535 1ee9349 4eab535 4542bfb 4eab535 4542bfb 4eab535 1ee9349 4542bfb 1ee9349 4542bfb 1ee9349 4542bfb 1ee9349 4542bfb 1ee9349 4542bfb 1ee9349 4542bfb 1ee9349 4542bfb 4eab535 4542bfb 4eab535 1ee9349 4542bfb 4eab535 4542bfb 4eab535 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import torch
import gradio as gr
import cv2
import numpy as np
from sahi.utils.yolov5 import download_yolov5s6_model
# import required functions, classes
from sahi import AutoDetectionModel
from sahi.predict import get_sliced_prediction, visualize_object_predictions
# Autodetect GPU
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Load the model
yolov5_model_path = "best.pt"
download_yolov5s6_model(destination_path=yolov5_model_path)
detection_model = AutoDetectionModel.from_pretrained(
model_type="yolov5",
model_path=yolov5_model_path,
confidence_threshold=0.01,
device=device,
)
def do_detection(image_path, hide_labels, confidence_scores):
# Obtain detection results
result = get_sliced_prediction(
image_path,
detection_model,
slice_height=512,
slice_width=512,
overlap_height_ratio=0.12,
overlap_width_ratio=0.12,
)
# Filter detections according to the slider and count the number of classes
# for visualization
predictions = []
class_counts = {}
for i in result.object_prediction_list:
score = i.score
value = score.value
category = i.category
category_name = category.name
if value > confidence_scores[category_name]:
predictions.append(i)
if i.category.name not in class_counts:
class_counts[i.category.name] = 1
else:
class_counts[i.category.name] += 1
# Draw the boxes and labels on top of the image
img_rgb = visualize_object_predictions(
image_path,
object_prediction_list=predictions,
text_size=1,
text_th=1,
hide_labels=hide_labels,
rect_th=3,
)["image"]
# Construct a legend
legend_text = "Symbols Counted:"
for class_name, count in class_counts.items():
legend_text += f" {class_name}: {count} |"
font = cv2.FONT_HERSHEY_SIMPLEX
if hide_labels:
font_scale = 1.5
else:
font_scale = 1
font_color = (255, 255, 255)
font_thickness = 2
legend_bg_color = (131, 79, 0)
legend_padding = 10
legend_size, _ = cv2.getTextSize(legend_text, font, font_scale, font_thickness)
legend_bg_height = legend_size[1] + 2 * legend_padding
legend_bg_width = legend_size[0] + 2 * legend_padding
legend_bg = np.zeros((legend_bg_height, legend_bg_width, 3), dtype=np.uint8)
legend_bg[:] = legend_bg_color
cv2.putText(
legend_bg,
legend_text,
(legend_padding, legend_padding + legend_size[1]),
font,
font_scale,
font_color,
font_thickness,
)
img_height, img_width, _ = img_rgb.shape
legend_x = img_width - legend_bg_width
legend_y = img_height - legend_bg_height
img_rgb[legend_y:, legend_x:, :] = legend_bg
return (
img_rgb,
result.to_coco_predictions(),
)
def call_func(
image_path,
hide_labels,
singleplex_value,
duplex_value,
triplex_value,
quadruplex_value,
gfci_value,
gfci_wp_value,
):
confidence_scores = {
"Singleplex - Standard": singleplex_value,
"Duplex - Standard": duplex_value,
"Triplex - Standard": triplex_value,
"Quadruplex - Standard": quadruplex_value,
"Duplex - GFCI": gfci_value,
"Duplex - Weatherproof-GFCI": gfci_wp_value,
}
return do_detection(image_path, hide_labels, confidence_scores)
demo = gr.Blocks()
theme = gr.themes.Soft()
with gr.Blocks(theme=theme) as demo:
gr.Markdown(
"""
<h1 align="center">Receptacle Detector for Takeoff Automation</h1>
"""
)
with gr.Row():
input_image = gr.Image(
label="Upload an image here.",
source="upload",
interactive=True,
)
examples = gr.Examples(
examples=[
["test1.jpg"],
["test2.jpg"],
["test3.jpg"],
["test4.jpg"],
],
inputs=[input_image],
examples_per_page=4,
label="Examples to use.",
)
hide_labels = gr.Checkbox(label="Hide labels")
with gr.Accordion("Visualization Confidence Thresholds", open=False):
singleplex_slider = gr.Slider(
minimum=0.1,
maximum=1,
value=0.53,
interactive=True,
label="Singleplex",
)
duplex_slider = gr.Slider(
minimum=0.1,
maximum=1,
value=0.66,
interactive=True,
label="Duplex",
)
triplex_slider = gr.Slider(
minimum=0.1,
maximum=1,
value=0.65,
interactive=True,
label="Triplex",
)
quadruplex_slider = gr.Slider(
minimum=0.1,
maximum=1,
value=0.63,
interactive=True,
label="Quadruplex",
)
gfci_slider = gr.Slider(
minimum=0.1,
maximum=1,
value=0.31,
interactive=True,
label="GFCI",
)
gfci_wp_slider = gr.Slider(
minimum=0.1,
maximum=1,
value=0.33,
interactive=True,
label="GFCI/WP",
)
results_button = gr.Button("Submit")
results_button.click(
call_func,
inputs=[
input_image,
hide_labels,
singleplex_slider,
duplex_slider,
triplex_slider,
quadruplex_slider,
gfci_slider,
gfci_wp_slider,
],
outputs=[
gr.Image(type="numpy", label="Output Image"),
gr.Json(),
],
)
demo.launch() |