Spaces:
Sleeping
Sleeping
Rework the code, add json output
Browse files
app.py
CHANGED
@@ -1,182 +1,71 @@
|
|
|
|
1 |
|
2 |
import gradio as gr
|
3 |
import cv2
|
4 |
-
import requests
|
5 |
-
import os
|
6 |
import numpy as np
|
7 |
-
from sahi.utils.yolov5 import
|
8 |
-
download_yolov5s6_model,
|
9 |
-
)
|
10 |
-
|
11 |
|
12 |
# import required functions, classes
|
13 |
from sahi import AutoDetectionModel
|
14 |
-
from sahi.
|
15 |
-
from sahi.utils.file import download_from_url
|
16 |
-
from sahi.predict import get_prediction, get_sliced_prediction, predict, visualize_object_predictions
|
17 |
-
from IPython.display import Image
|
18 |
-
|
19 |
-
from ultralytics import YOLO
|
20 |
-
import gradio as gr
|
21 |
-
import cv2
|
22 |
-
import requests
|
23 |
-
import os
|
24 |
-
|
25 |
-
from ultralytics import YOLO
|
26 |
|
27 |
|
28 |
-
yolov5_model_path =
|
29 |
download_yolov5s6_model(destination_path=yolov5_model_path)
|
30 |
detection_model = AutoDetectionModel.from_pretrained(
|
31 |
-
model_type=
|
32 |
model_path=yolov5_model_path,
|
33 |
confidence_threshold=0.01,
|
34 |
-
device="cpu",
|
35 |
)
|
36 |
|
37 |
-
#model = YOLO('/home/ubuntu/Receptacle_Detection_Demo/best.pt')
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
demo = gr.Blocks()
|
42 |
-
|
43 |
EXAMPLES = [
|
44 |
-
[
|
45 |
["test2.jpg"],
|
46 |
["test3.jpg"],
|
47 |
["test4.jpg"],
|
48 |
]
|
49 |
|
50 |
|
51 |
-
def
|
52 |
result = get_sliced_prediction(
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
#image = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/prediction_visual.png")
|
61 |
-
#img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
62 |
|
63 |
count = -1
|
64 |
-
new_list=[]
|
65 |
for i in result.object_prediction_list:
|
66 |
count += 1
|
67 |
-
print(i)
|
68 |
score = i.score
|
69 |
value = score.value
|
70 |
category = i.category
|
71 |
category_name = category.name
|
72 |
if value > confidence_scores[category_name]:
|
73 |
-
print(value)
|
74 |
-
print(confidence_scores[category_name])
|
75 |
new_list.append(result.object_prediction_list[count])
|
76 |
-
|
77 |
-
img_converted = cv2.cvtColor(image_path, cv2.COLOR_BGR2RGB)
|
78 |
-
numpydata = np.asarray(img_converted)
|
79 |
-
visualize_object_predictions(
|
80 |
-
numpydata,
|
81 |
-
object_prediction_list = new_list,
|
82 |
-
text_size=1,
|
83 |
-
text_th=1,
|
84 |
-
hide_labels = 0,
|
85 |
-
rect_th=3,
|
86 |
-
output_dir='/home/ubuntu/Receptacle_Detection_Demo/',
|
87 |
-
file_name = 'result',
|
88 |
-
export_format = 'png')
|
89 |
-
image2 = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/result.png")
|
90 |
-
img_rgb = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
|
91 |
-
|
92 |
-
|
93 |
-
class_counts = {}
|
94 |
-
|
95 |
-
|
96 |
-
predictions = new_list
|
97 |
-
for i in predictions:
|
98 |
-
category = i.category
|
99 |
-
category_name = category.name
|
100 |
-
if category_name not in class_counts:
|
101 |
-
class_counts[category_name] = 1
|
102 |
-
else:
|
103 |
-
class_counts[category_name] += 1
|
104 |
-
|
105 |
-
|
106 |
-
legend_text = 'Symbols Counted:'
|
107 |
-
for class_name, count in class_counts.items():
|
108 |
-
legend_text += f' {class_name}: {count} |'
|
109 |
-
|
110 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
111 |
-
font_scale = 1
|
112 |
-
font_color = (255, 255, 255)
|
113 |
-
font_thickness = 2
|
114 |
-
legend_bg_color = (131, 79, 0)
|
115 |
-
legend_padding = 10
|
116 |
|
117 |
-
legend_size, _ = cv2.getTextSize(legend_text, font, font_scale, font_thickness)
|
118 |
-
legend_bg_height = legend_size[1] + 2 * legend_padding
|
119 |
-
legend_bg_width = legend_size[0] + 2 * legend_padding
|
120 |
-
|
121 |
-
legend_bg = np.zeros((legend_bg_height, legend_bg_width, 3), dtype=np.uint8)
|
122 |
-
legend_bg[:] = legend_bg_color
|
123 |
-
cv2.putText(legend_bg, legend_text, (legend_padding, legend_padding + legend_size[1]), font,
|
124 |
-
font_scale, font_color, font_thickness)
|
125 |
-
|
126 |
-
img_height, img_width, _ = img_rgb.shape
|
127 |
-
legend_x = img_width - legend_bg_width
|
128 |
-
legend_y = img_height - legend_bg_height
|
129 |
-
|
130 |
-
img_rgb[legend_y:, legend_x:, :] = legend_bg
|
131 |
-
|
132 |
-
result_image_path = '/home/ubuntu/Receptacle_Detection_Demo/result_with_legend.png'
|
133 |
-
cv2.imwrite(result_image_path, img_rgb)
|
134 |
-
|
135 |
-
return cv2.cvtColor(cv2.imread(result_image_path), cv2.COLOR_BGR2RGB)
|
136 |
-
|
137 |
-
def without_labels(image_path):
|
138 |
-
result = get_sliced_prediction(
|
139 |
-
image_path,
|
140 |
-
detection_model,
|
141 |
-
slice_height = 512,
|
142 |
-
slice_width = 512,
|
143 |
-
overlap_height_ratio = 0.12,
|
144 |
-
overlap_width_ratio = 0.12)
|
145 |
-
#result.export_visuals(export_dir="/home/ubuntu/Receptacle_Detection_Demo/")
|
146 |
-
#image = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/prediction_visual.png")
|
147 |
-
#img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
148 |
-
|
149 |
-
count = -1
|
150 |
-
new_list=[]
|
151 |
-
for i in result.object_prediction_list:
|
152 |
-
count += 1
|
153 |
-
print(i)
|
154 |
-
score = i.score
|
155 |
-
value = score.value
|
156 |
-
category = i.category
|
157 |
-
category_name = category.name
|
158 |
-
if value > confidence_scores[category_name]:
|
159 |
-
print(value)
|
160 |
-
print(confidence_scores[category_name])
|
161 |
-
new_list.append(result.object_prediction_list[count])
|
162 |
-
|
163 |
img_converted = cv2.cvtColor(image_path, cv2.COLOR_BGR2RGB)
|
164 |
numpydata = np.asarray(img_converted)
|
165 |
visualize_object_predictions(
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
173 |
image2 = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/result.png")
|
174 |
img_rgb = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
|
175 |
|
176 |
-
|
177 |
class_counts = {}
|
178 |
|
179 |
-
|
180 |
predictions = new_list
|
181 |
for i in predictions:
|
182 |
category = i.category
|
@@ -186,16 +75,18 @@ def without_labels(image_path):
|
|
186 |
else:
|
187 |
class_counts[category_name] += 1
|
188 |
|
189 |
-
|
190 |
-
legend_text = 'Symbols Counted:'
|
191 |
for class_name, count in class_counts.items():
|
192 |
-
legend_text += f
|
193 |
-
|
194 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
197 |
font_thickness = 2
|
198 |
-
legend_bg_color = (131, 79, 0)
|
199 |
legend_padding = 10
|
200 |
|
201 |
legend_size, _ = cv2.getTextSize(legend_text, font, font_scale, font_thickness)
|
@@ -204,52 +95,62 @@ def without_labels(image_path):
|
|
204 |
|
205 |
legend_bg = np.zeros((legend_bg_height, legend_bg_width, 3), dtype=np.uint8)
|
206 |
legend_bg[:] = legend_bg_color
|
207 |
-
cv2.putText(
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
img_height, img_width, _ = img_rgb.shape
|
211 |
legend_x = img_width - legend_bg_width
|
212 |
legend_y = img_height - legend_bg_height
|
213 |
|
214 |
img_rgb[legend_y:, legend_x:, :] = legend_bg
|
215 |
|
216 |
-
result_image_path =
|
217 |
cv2.imwrite(result_image_path, img_rgb)
|
218 |
|
219 |
-
return
|
|
|
|
|
|
|
220 |
|
221 |
-
def choose_function(choice, input_text):
|
222 |
-
if choice == "With Labels":
|
223 |
-
return with_labels(input_text)
|
224 |
-
else:
|
225 |
-
return without_labels(input_text)
|
226 |
-
print("Starting the demo...")
|
227 |
|
|
|
|
|
|
|
228 |
|
229 |
|
230 |
-
def update_duplex(val):
|
231 |
-
confidence_scores['Duplex - Standard'] = val
|
232 |
-
return 'updated!'
|
233 |
def update_single(val):
|
234 |
-
confidence_scores[
|
235 |
-
return
|
|
|
236 |
|
237 |
def update_triplex(val):
|
238 |
-
confidence_scores[
|
239 |
-
return
|
|
|
240 |
|
241 |
def update_quadruplex(val):
|
242 |
-
confidence_scores[
|
243 |
-
return
|
|
|
244 |
|
245 |
def update_gfci(val):
|
246 |
-
confidence_scores[
|
247 |
-
return
|
|
|
248 |
|
249 |
def update_gfciwp(val):
|
250 |
-
confidence_scores[
|
251 |
-
return
|
252 |
|
|
|
|
|
253 |
theme = gr.themes.Soft()
|
254 |
|
255 |
with gr.Blocks(theme=theme) as demo:
|
@@ -259,80 +160,87 @@ with gr.Blocks(theme=theme) as demo:
|
|
259 |
"""
|
260 |
)
|
261 |
|
262 |
-
gr.Markdown("### Step 1: Upload an image")
|
263 |
-
|
264 |
with gr.Row():
|
265 |
input_image = gr.Image(
|
266 |
-
label="Upload an image here.",
|
|
|
|
|
267 |
)
|
268 |
examples = gr.Examples(
|
269 |
-
examples=EXAMPLES,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
)
|
271 |
|
272 |
-
|
273 |
-
gr.Markdown("### Step 2: Choose either \n With labels: See receptacles detected with type detected/confidence score included\n Without labels: See only bounding boxes")
|
274 |
-
filter_name = gr.Dropdown(
|
275 |
-
choices=["With Labels", "Without Labels"], label="With/Without Labels", interactive=True
|
276 |
-
)
|
277 |
-
gr.Markdown("### Step 3: Choose confidence score levels for each symbol detected (default are optimal scores)")
|
278 |
-
filter_name1 = gr.Slider(
|
279 |
-
minimum = .1,
|
280 |
-
maximum = 1,
|
281 |
-
value = .53,
|
282 |
-
interactive = True,
|
283 |
-
label = 'Singleplex',
|
284 |
-
)
|
285 |
-
filter_name2 = gr.Slider(
|
286 |
-
minimum = .1,
|
287 |
-
maximum = 1,
|
288 |
-
value = .66,
|
289 |
-
interactive = True,
|
290 |
-
label = 'Duplex',
|
291 |
-
)
|
292 |
-
filter_name3 = gr.Slider(
|
293 |
-
minimum = .1,
|
294 |
-
maximum = 1,
|
295 |
-
value = .65,
|
296 |
-
interactive = True,
|
297 |
-
label = 'Triplex',
|
298 |
-
)
|
299 |
-
filter_name4 = gr.Slider(
|
300 |
-
minimum = .1,
|
301 |
-
maximum = 1,
|
302 |
-
value = .63,
|
303 |
-
interactive = True,
|
304 |
-
label = 'Quadruplex',
|
305 |
-
)
|
306 |
-
filter_name5 = gr.Slider(
|
307 |
-
minimum = .1,
|
308 |
-
maximum = 1,
|
309 |
-
value = .31,
|
310 |
-
interactive = True,
|
311 |
-
label = 'GFCI',
|
312 |
-
)
|
313 |
-
filter_name6 = gr.Slider(
|
314 |
-
minimum = .1,
|
315 |
-
maximum = 1,
|
316 |
-
value = .33,
|
317 |
-
interactive = True,
|
318 |
-
label = 'GFCI/WP',
|
319 |
-
)
|
320 |
-
|
321 |
-
filter_name2.change(fn=update_duplex, inputs=filter_name2)
|
322 |
filter_name1.change(fn=update_single, inputs=filter_name1)
|
|
|
323 |
filter_name3.change(fn=update_triplex, inputs=filter_name3)
|
324 |
filter_name4.change(fn=update_quadruplex, inputs=filter_name4)
|
325 |
filter_name5.change(fn=update_gfci, inputs=filter_name5)
|
326 |
filter_name6.change(fn=update_gfciwp, inputs=filter_name6)
|
327 |
-
confidence_scores = {
|
328 |
-
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
results_button.click(
|
332 |
-
|
333 |
-
inputs
|
334 |
-
outputs
|
335 |
-
|
|
|
|
|
336 |
)
|
337 |
-
|
338 |
demo.launch()
|
|
|
1 |
+
import json
|
2 |
|
3 |
import gradio as gr
|
4 |
import cv2
|
|
|
|
|
5 |
import numpy as np
|
6 |
+
from sahi.utils.yolov5 import download_yolov5s6_model
|
|
|
|
|
|
|
7 |
|
8 |
# import required functions, classes
|
9 |
from sahi import AutoDetectionModel
|
10 |
+
from sahi.predict import get_sliced_prediction, visualize_object_predictions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
+
yolov5_model_path = "best.pt"
|
14 |
download_yolov5s6_model(destination_path=yolov5_model_path)
|
15 |
detection_model = AutoDetectionModel.from_pretrained(
|
16 |
+
model_type="yolov5",
|
17 |
model_path=yolov5_model_path,
|
18 |
confidence_threshold=0.01,
|
19 |
+
device="cpu", # or 'cuda:0'
|
20 |
)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
EXAMPLES = [
|
23 |
+
["test1.jpg"],
|
24 |
["test2.jpg"],
|
25 |
["test3.jpg"],
|
26 |
["test4.jpg"],
|
27 |
]
|
28 |
|
29 |
|
30 |
+
def do_detection(image_path, hide_labels=False):
|
31 |
result = get_sliced_prediction(
|
32 |
+
image_path,
|
33 |
+
detection_model,
|
34 |
+
slice_height=512,
|
35 |
+
slice_width=512,
|
36 |
+
overlap_height_ratio=0.12,
|
37 |
+
overlap_width_ratio=0.12,
|
38 |
+
)
|
|
|
|
|
39 |
|
40 |
count = -1
|
41 |
+
new_list = []
|
42 |
for i in result.object_prediction_list:
|
43 |
count += 1
|
|
|
44 |
score = i.score
|
45 |
value = score.value
|
46 |
category = i.category
|
47 |
category_name = category.name
|
48 |
if value > confidence_scores[category_name]:
|
|
|
|
|
49 |
new_list.append(result.object_prediction_list[count])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
img_converted = cv2.cvtColor(image_path, cv2.COLOR_BGR2RGB)
|
52 |
numpydata = np.asarray(img_converted)
|
53 |
visualize_object_predictions(
|
54 |
+
numpydata,
|
55 |
+
object_prediction_list=new_list,
|
56 |
+
text_size=1,
|
57 |
+
text_th=1,
|
58 |
+
hide_labels=hide_labels,
|
59 |
+
rect_th=3,
|
60 |
+
output_dir="/home/ubuntu/Receptacle_Detection_Demo/",
|
61 |
+
file_name="result",
|
62 |
+
export_format="png",
|
63 |
+
)
|
64 |
image2 = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/result.png")
|
65 |
img_rgb = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
|
66 |
|
|
|
67 |
class_counts = {}
|
68 |
|
|
|
69 |
predictions = new_list
|
70 |
for i in predictions:
|
71 |
category = i.category
|
|
|
75 |
else:
|
76 |
class_counts[category_name] += 1
|
77 |
|
78 |
+
legend_text = "Symbols Counted:"
|
|
|
79 |
for class_name, count in class_counts.items():
|
80 |
+
legend_text += f" {class_name}: {count} |"
|
81 |
+
|
82 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
83 |
+
if hide_labels:
|
84 |
+
font_scale = 1.5
|
85 |
+
else:
|
86 |
+
font_scale = 1
|
87 |
+
font_color = (255, 255, 255)
|
88 |
font_thickness = 2
|
89 |
+
legend_bg_color = (131, 79, 0)
|
90 |
legend_padding = 10
|
91 |
|
92 |
legend_size, _ = cv2.getTextSize(legend_text, font, font_scale, font_thickness)
|
|
|
95 |
|
96 |
legend_bg = np.zeros((legend_bg_height, legend_bg_width, 3), dtype=np.uint8)
|
97 |
legend_bg[:] = legend_bg_color
|
98 |
+
cv2.putText(
|
99 |
+
legend_bg,
|
100 |
+
legend_text,
|
101 |
+
(legend_padding, legend_padding + legend_size[1]),
|
102 |
+
font,
|
103 |
+
font_scale,
|
104 |
+
font_color,
|
105 |
+
font_thickness,
|
106 |
+
)
|
107 |
+
|
108 |
img_height, img_width, _ = img_rgb.shape
|
109 |
legend_x = img_width - legend_bg_width
|
110 |
legend_y = img_height - legend_bg_height
|
111 |
|
112 |
img_rgb[legend_y:, legend_x:, :] = legend_bg
|
113 |
|
114 |
+
result_image_path = "/home/ubuntu/Receptacle_Detection_Demo/result_with_legend.png"
|
115 |
cv2.imwrite(result_image_path, img_rgb)
|
116 |
|
117 |
+
return (
|
118 |
+
cv2.cvtColor(cv2.imread(result_image_path), cv2.COLOR_BGR2RGB),
|
119 |
+
result.to_coco_predictions(),
|
120 |
+
)
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
def update_duplex(val):
|
124 |
+
confidence_scores["Duplex - Standard"] = val
|
125 |
+
return "updated!"
|
126 |
|
127 |
|
|
|
|
|
|
|
128 |
def update_single(val):
|
129 |
+
confidence_scores["Singleplex - Standard"] = val
|
130 |
+
return "updated!"
|
131 |
+
|
132 |
|
133 |
def update_triplex(val):
|
134 |
+
confidence_scores["Triplex - Standard"] = val
|
135 |
+
return "updated!"
|
136 |
+
|
137 |
|
138 |
def update_quadruplex(val):
|
139 |
+
confidence_scores["Quadruplex - Standard"] = val
|
140 |
+
return "updated!"
|
141 |
+
|
142 |
|
143 |
def update_gfci(val):
|
144 |
+
confidence_scores["Duplex - GFCI"] = val
|
145 |
+
return "updated!"
|
146 |
+
|
147 |
|
148 |
def update_gfciwp(val):
|
149 |
+
confidence_scores["Duplex - Weatherproof-GFCI"] = val
|
150 |
+
return "updated!"
|
151 |
|
152 |
+
|
153 |
+
demo = gr.Blocks()
|
154 |
theme = gr.themes.Soft()
|
155 |
|
156 |
with gr.Blocks(theme=theme) as demo:
|
|
|
160 |
"""
|
161 |
)
|
162 |
|
|
|
|
|
163 |
with gr.Row():
|
164 |
input_image = gr.Image(
|
165 |
+
label="Upload an image here.",
|
166 |
+
source="upload",
|
167 |
+
interactive=True,
|
168 |
)
|
169 |
examples = gr.Examples(
|
170 |
+
examples=EXAMPLES,
|
171 |
+
inputs=[input_image],
|
172 |
+
examples_per_page=4,
|
173 |
+
label="Examples to use.",
|
174 |
+
)
|
175 |
+
|
176 |
+
hide_labels = gr.Checkbox(label="Hide labels")
|
177 |
+
with gr.Accordion("Visualization Confidence Thresholds", open=False):
|
178 |
+
filter_name1 = gr.Slider(
|
179 |
+
minimum=0.1,
|
180 |
+
maximum=1,
|
181 |
+
value=0.53,
|
182 |
+
interactive=True,
|
183 |
+
label="Singleplex",
|
184 |
+
)
|
185 |
+
filter_name2 = gr.Slider(
|
186 |
+
minimum=0.1,
|
187 |
+
maximum=1,
|
188 |
+
value=0.66,
|
189 |
+
interactive=True,
|
190 |
+
label="Duplex",
|
191 |
+
)
|
192 |
+
filter_name3 = gr.Slider(
|
193 |
+
minimum=0.1,
|
194 |
+
maximum=1,
|
195 |
+
value=0.65,
|
196 |
+
interactive=True,
|
197 |
+
label="Triplex",
|
198 |
+
)
|
199 |
+
filter_name4 = gr.Slider(
|
200 |
+
minimum=0.1,
|
201 |
+
maximum=1,
|
202 |
+
value=0.63,
|
203 |
+
interactive=True,
|
204 |
+
label="Quadruplex",
|
205 |
+
)
|
206 |
+
filter_name5 = gr.Slider(
|
207 |
+
minimum=0.1,
|
208 |
+
maximum=1,
|
209 |
+
value=0.31,
|
210 |
+
interactive=True,
|
211 |
+
label="GFCI",
|
212 |
+
)
|
213 |
+
filter_name6 = gr.Slider(
|
214 |
+
minimum=0.1,
|
215 |
+
maximum=1,
|
216 |
+
value=0.33,
|
217 |
+
interactive=True,
|
218 |
+
label="GFCI/WP",
|
219 |
)
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
filter_name1.change(fn=update_single, inputs=filter_name1)
|
222 |
+
filter_name2.change(fn=update_duplex, inputs=filter_name2)
|
223 |
filter_name3.change(fn=update_triplex, inputs=filter_name3)
|
224 |
filter_name4.change(fn=update_quadruplex, inputs=filter_name4)
|
225 |
filter_name5.change(fn=update_gfci, inputs=filter_name5)
|
226 |
filter_name6.change(fn=update_gfciwp, inputs=filter_name6)
|
227 |
+
confidence_scores = {
|
228 |
+
"Triplex - Standard": filter_name3.value,
|
229 |
+
"Duplex - Standard": filter_name2.value,
|
230 |
+
"Singleplex - Standard": filter_name1.value,
|
231 |
+
"Duplex - GFCI": filter_name5.value,
|
232 |
+
"Duplex - Weatherproof-GFCI": filter_name6.value,
|
233 |
+
"Quadruplex - Standard": filter_name4.value,
|
234 |
+
}
|
235 |
+
|
236 |
+
results_button = gr.Button("Submit")
|
237 |
results_button.click(
|
238 |
+
do_detection,
|
239 |
+
inputs=[input_image, hide_labels],
|
240 |
+
outputs=[
|
241 |
+
gr.Image(type="numpy", label="Output Image"),
|
242 |
+
gr.Json(),
|
243 |
+
],
|
244 |
)
|
245 |
+
|
246 |
demo.launch()
|