Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +3 -9
- app.py +338 -0
- best.pt +3 -0
- requirements.txt +7 -0
- test1.jpg +3 -0
- test2.jpg +0 -0
- test3.jpg +3 -0
- test4.jpg +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
test1.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
test3.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji: 🐢
|
| 4 |
-
colorFrom: gray
|
| 5 |
-
colorTo: gray
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 3.47.1
|
| 8 |
app_file: app.py
|
| 9 |
-
|
|
|
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: receptacle_detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
app_file: app.py
|
| 4 |
+
sdk: gradio
|
| 5 |
+
sdk_version: 3.42.0
|
| 6 |
---
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import cv2
|
| 4 |
+
import requests
|
| 5 |
+
import os
|
| 6 |
+
import numpy as np
|
| 7 |
+
from sahi.utils.yolov5 import (
|
| 8 |
+
download_yolov5s6_model,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# import required functions, classes
|
| 13 |
+
from sahi import AutoDetectionModel
|
| 14 |
+
from sahi.utils.cv import read_image
|
| 15 |
+
from sahi.utils.file import download_from_url
|
| 16 |
+
from sahi.predict import get_prediction, get_sliced_prediction, predict, visualize_object_predictions
|
| 17 |
+
from IPython.display import Image
|
| 18 |
+
|
| 19 |
+
from ultralytics import YOLO
|
| 20 |
+
import gradio as gr
|
| 21 |
+
import cv2
|
| 22 |
+
import requests
|
| 23 |
+
import os
|
| 24 |
+
|
| 25 |
+
from ultralytics import YOLO
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
yolov5_model_path = 'best.pt'
|
| 29 |
+
download_yolov5s6_model(destination_path=yolov5_model_path)
|
| 30 |
+
detection_model = AutoDetectionModel.from_pretrained(
|
| 31 |
+
model_type='yolov5',
|
| 32 |
+
model_path=yolov5_model_path,
|
| 33 |
+
confidence_threshold=0.01,
|
| 34 |
+
device="cpu", # or 'cuda:0'
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
#model = YOLO('/home/ubuntu/Receptacle_Detection_Demo/best.pt')
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
demo = gr.Blocks()
|
| 42 |
+
|
| 43 |
+
EXAMPLES = [
|
| 44 |
+
[ "test1.jpg"],
|
| 45 |
+
["test2.jpg"],
|
| 46 |
+
["test3.jpg"],
|
| 47 |
+
["test4.jpg"],
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def with_labels(image_path):
|
| 52 |
+
result = get_sliced_prediction(
|
| 53 |
+
image_path,
|
| 54 |
+
detection_model,
|
| 55 |
+
slice_height = 512,
|
| 56 |
+
slice_width = 512,
|
| 57 |
+
overlap_height_ratio = 0.12,
|
| 58 |
+
overlap_width_ratio = 0.12)
|
| 59 |
+
#result.export_visuals(export_dir="/home/ubuntu/Receptacle_Detection_Demo/")
|
| 60 |
+
#image = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/prediction_visual.png")
|
| 61 |
+
#img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
| 62 |
+
|
| 63 |
+
count = -1
|
| 64 |
+
new_list=[]
|
| 65 |
+
for i in result.object_prediction_list:
|
| 66 |
+
count += 1
|
| 67 |
+
print(i)
|
| 68 |
+
score = i.score
|
| 69 |
+
value = score.value
|
| 70 |
+
category = i.category
|
| 71 |
+
category_name = category.name
|
| 72 |
+
if value > confidence_scores[category_name]:
|
| 73 |
+
print(value)
|
| 74 |
+
print(confidence_scores[category_name])
|
| 75 |
+
new_list.append(result.object_prediction_list[count])
|
| 76 |
+
|
| 77 |
+
img_converted = cv2.cvtColor(image_path, cv2.COLOR_BGR2RGB)
|
| 78 |
+
numpydata = np.asarray(img_converted)
|
| 79 |
+
visualize_object_predictions(
|
| 80 |
+
numpydata,
|
| 81 |
+
object_prediction_list = new_list,
|
| 82 |
+
text_size=1,
|
| 83 |
+
text_th=1,
|
| 84 |
+
hide_labels = 0,
|
| 85 |
+
rect_th=3,
|
| 86 |
+
output_dir='/home/ubuntu/Receptacle_Detection_Demo/',
|
| 87 |
+
file_name = 'result',
|
| 88 |
+
export_format = 'png')
|
| 89 |
+
image2 = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/result.png")
|
| 90 |
+
img_rgb = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class_counts = {}
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
predictions = new_list
|
| 97 |
+
for i in predictions:
|
| 98 |
+
category = i.category
|
| 99 |
+
category_name = category.name
|
| 100 |
+
if category_name not in class_counts:
|
| 101 |
+
class_counts[category_name] = 1
|
| 102 |
+
else:
|
| 103 |
+
class_counts[category_name] += 1
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
legend_text = 'Symbols Counted:'
|
| 107 |
+
for class_name, count in class_counts.items():
|
| 108 |
+
legend_text += f' {class_name}: {count} |'
|
| 109 |
+
|
| 110 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 111 |
+
font_scale = 1
|
| 112 |
+
font_color = (255, 255, 255)
|
| 113 |
+
font_thickness = 2
|
| 114 |
+
legend_bg_color = (131, 79, 0)
|
| 115 |
+
legend_padding = 10
|
| 116 |
+
|
| 117 |
+
legend_size, _ = cv2.getTextSize(legend_text, font, font_scale, font_thickness)
|
| 118 |
+
legend_bg_height = legend_size[1] + 2 * legend_padding
|
| 119 |
+
legend_bg_width = legend_size[0] + 2 * legend_padding
|
| 120 |
+
|
| 121 |
+
legend_bg = np.zeros((legend_bg_height, legend_bg_width, 3), dtype=np.uint8)
|
| 122 |
+
legend_bg[:] = legend_bg_color
|
| 123 |
+
cv2.putText(legend_bg, legend_text, (legend_padding, legend_padding + legend_size[1]), font,
|
| 124 |
+
font_scale, font_color, font_thickness)
|
| 125 |
+
|
| 126 |
+
img_height, img_width, _ = img_rgb.shape
|
| 127 |
+
legend_x = img_width - legend_bg_width
|
| 128 |
+
legend_y = img_height - legend_bg_height
|
| 129 |
+
|
| 130 |
+
img_rgb[legend_y:, legend_x:, :] = legend_bg
|
| 131 |
+
|
| 132 |
+
result_image_path = '/home/ubuntu/Receptacle_Detection_Demo/result_with_legend.png'
|
| 133 |
+
cv2.imwrite(result_image_path, img_rgb)
|
| 134 |
+
|
| 135 |
+
return cv2.cvtColor(cv2.imread(result_image_path), cv2.COLOR_BGR2RGB)
|
| 136 |
+
|
| 137 |
+
def without_labels(image_path):
|
| 138 |
+
result = get_sliced_prediction(
|
| 139 |
+
image_path,
|
| 140 |
+
detection_model,
|
| 141 |
+
slice_height = 512,
|
| 142 |
+
slice_width = 512,
|
| 143 |
+
overlap_height_ratio = 0.12,
|
| 144 |
+
overlap_width_ratio = 0.12)
|
| 145 |
+
#result.export_visuals(export_dir="/home/ubuntu/Receptacle_Detection_Demo/")
|
| 146 |
+
#image = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/prediction_visual.png")
|
| 147 |
+
#img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
| 148 |
+
|
| 149 |
+
count = -1
|
| 150 |
+
new_list=[]
|
| 151 |
+
for i in result.object_prediction_list:
|
| 152 |
+
count += 1
|
| 153 |
+
print(i)
|
| 154 |
+
score = i.score
|
| 155 |
+
value = score.value
|
| 156 |
+
category = i.category
|
| 157 |
+
category_name = category.name
|
| 158 |
+
if value > confidence_scores[category_name]:
|
| 159 |
+
print(value)
|
| 160 |
+
print(confidence_scores[category_name])
|
| 161 |
+
new_list.append(result.object_prediction_list[count])
|
| 162 |
+
|
| 163 |
+
img_converted = cv2.cvtColor(image_path, cv2.COLOR_BGR2RGB)
|
| 164 |
+
numpydata = np.asarray(img_converted)
|
| 165 |
+
visualize_object_predictions(
|
| 166 |
+
numpydata,
|
| 167 |
+
object_prediction_list = new_list,
|
| 168 |
+
hide_labels = 1,
|
| 169 |
+
rect_th=3,
|
| 170 |
+
output_dir='/home/ubuntu/Receptacle_Detection_Demo/',
|
| 171 |
+
file_name = 'result',
|
| 172 |
+
export_format = 'png')
|
| 173 |
+
image2 = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/result.png")
|
| 174 |
+
img_rgb = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class_counts = {}
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
predictions = new_list
|
| 181 |
+
for i in predictions:
|
| 182 |
+
category = i.category
|
| 183 |
+
category_name = category.name
|
| 184 |
+
if category_name not in class_counts:
|
| 185 |
+
class_counts[category_name] = 1
|
| 186 |
+
else:
|
| 187 |
+
class_counts[category_name] += 1
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
legend_text = 'Symbols Counted:'
|
| 191 |
+
for class_name, count in class_counts.items():
|
| 192 |
+
legend_text += f' {class_name}: {count} |'
|
| 193 |
+
|
| 194 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
| 195 |
+
font_scale = 1.5
|
| 196 |
+
font_color = (255, 255, 255)
|
| 197 |
+
font_thickness = 2
|
| 198 |
+
legend_bg_color = (131, 79, 0)
|
| 199 |
+
legend_padding = 10
|
| 200 |
+
|
| 201 |
+
legend_size, _ = cv2.getTextSize(legend_text, font, font_scale, font_thickness)
|
| 202 |
+
legend_bg_height = legend_size[1] + 2 * legend_padding
|
| 203 |
+
legend_bg_width = legend_size[0] + 2 * legend_padding
|
| 204 |
+
|
| 205 |
+
legend_bg = np.zeros((legend_bg_height, legend_bg_width, 3), dtype=np.uint8)
|
| 206 |
+
legend_bg[:] = legend_bg_color
|
| 207 |
+
cv2.putText(legend_bg, legend_text, (legend_padding, legend_padding + legend_size[1]), font,
|
| 208 |
+
font_scale, font_color, font_thickness)
|
| 209 |
+
|
| 210 |
+
img_height, img_width, _ = img_rgb.shape
|
| 211 |
+
legend_x = img_width - legend_bg_width
|
| 212 |
+
legend_y = img_height - legend_bg_height
|
| 213 |
+
|
| 214 |
+
img_rgb[legend_y:, legend_x:, :] = legend_bg
|
| 215 |
+
|
| 216 |
+
result_image_path = '/home/ubuntu/Receptacle_Detection_Demo/result_with_legend.png'
|
| 217 |
+
cv2.imwrite(result_image_path, img_rgb)
|
| 218 |
+
|
| 219 |
+
return cv2.cvtColor(cv2.imread(result_image_path), cv2.COLOR_BGR2RGB)
|
| 220 |
+
|
| 221 |
+
def choose_function(choice, input_text):
|
| 222 |
+
if choice == "With Labels":
|
| 223 |
+
return with_labels(input_text)
|
| 224 |
+
else:
|
| 225 |
+
return without_labels(input_text)
|
| 226 |
+
print("Starting the demo...")
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def update_duplex(val):
|
| 231 |
+
confidence_scores['Duplex - Standard'] = val
|
| 232 |
+
return 'updated!'
|
| 233 |
+
def update_single(val):
|
| 234 |
+
confidence_scores['Singleplex - Standard'] = val
|
| 235 |
+
return 'updated!'
|
| 236 |
+
|
| 237 |
+
def update_triplex(val):
|
| 238 |
+
confidence_scores['Triplex - Standard'] = val
|
| 239 |
+
return 'updated!'
|
| 240 |
+
|
| 241 |
+
def update_quadruplex(val):
|
| 242 |
+
confidence_scores['Quadruplex - Standard'] = val
|
| 243 |
+
return 'updated!'
|
| 244 |
+
|
| 245 |
+
def update_gfci(val):
|
| 246 |
+
confidence_scores['Duplex - GFCI'] = val
|
| 247 |
+
return 'updated!'
|
| 248 |
+
|
| 249 |
+
def update_gfciwp(val):
|
| 250 |
+
confidence_scores['Duplex - Weatherproof-GFCI'] = val
|
| 251 |
+
return 'updated!'
|
| 252 |
+
|
| 253 |
+
theme = gr.themes.Soft()
|
| 254 |
+
|
| 255 |
+
with gr.Blocks(theme=theme) as demo:
|
| 256 |
+
gr.Markdown(
|
| 257 |
+
"""
|
| 258 |
+
<h1 align="center">Receptacle Detector for Takeoff Automation</h1>
|
| 259 |
+
"""
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
gr.Markdown("### Step 1: Upload an image")
|
| 263 |
+
|
| 264 |
+
with gr.Row():
|
| 265 |
+
input_image = gr.Image(
|
| 266 |
+
label="Upload an image here.", source="upload", interactive=True,
|
| 267 |
+
)
|
| 268 |
+
examples = gr.Examples(
|
| 269 |
+
examples=EXAMPLES, inputs=[input_image], examples_per_page=4, label="Examples to use.",
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
gr.Markdown("### Step 2: Choose either \n With labels: See receptacles detected with type detected/confidence score included\n Without labels: See only bounding boxes")
|
| 274 |
+
filter_name = gr.Dropdown(
|
| 275 |
+
choices=["With Labels", "Without Labels"], label="With/Without Labels", interactive=True
|
| 276 |
+
)
|
| 277 |
+
gr.Markdown("### Step 3: Choose confidence score levels for each symbol detected (default are optimal scores)")
|
| 278 |
+
filter_name1 = gr.Slider(
|
| 279 |
+
minimum = .1,
|
| 280 |
+
maximum = 1,
|
| 281 |
+
value = .53,
|
| 282 |
+
interactive = True,
|
| 283 |
+
label = 'Singleplex',
|
| 284 |
+
)
|
| 285 |
+
filter_name2 = gr.Slider(
|
| 286 |
+
minimum = .1,
|
| 287 |
+
maximum = 1,
|
| 288 |
+
value = .66,
|
| 289 |
+
interactive = True,
|
| 290 |
+
label = 'Duplex',
|
| 291 |
+
)
|
| 292 |
+
filter_name3 = gr.Slider(
|
| 293 |
+
minimum = .1,
|
| 294 |
+
maximum = 1,
|
| 295 |
+
value = .65,
|
| 296 |
+
interactive = True,
|
| 297 |
+
label = 'Triplex',
|
| 298 |
+
)
|
| 299 |
+
filter_name4 = gr.Slider(
|
| 300 |
+
minimum = .1,
|
| 301 |
+
maximum = 1,
|
| 302 |
+
value = .63,
|
| 303 |
+
interactive = True,
|
| 304 |
+
label = 'Quadruplex',
|
| 305 |
+
)
|
| 306 |
+
filter_name5 = gr.Slider(
|
| 307 |
+
minimum = .1,
|
| 308 |
+
maximum = 1,
|
| 309 |
+
value = .31,
|
| 310 |
+
interactive = True,
|
| 311 |
+
label = 'GFCI',
|
| 312 |
+
)
|
| 313 |
+
filter_name6 = gr.Slider(
|
| 314 |
+
minimum = .1,
|
| 315 |
+
maximum = 1,
|
| 316 |
+
value = .33,
|
| 317 |
+
interactive = True,
|
| 318 |
+
label = 'GFCI/WP',
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
filter_name2.change(fn=update_duplex, inputs=filter_name2)
|
| 322 |
+
filter_name1.change(fn=update_single, inputs=filter_name1)
|
| 323 |
+
filter_name3.change(fn=update_triplex, inputs=filter_name3)
|
| 324 |
+
filter_name4.change(fn=update_quadruplex, inputs=filter_name4)
|
| 325 |
+
filter_name5.change(fn=update_gfci, inputs=filter_name5)
|
| 326 |
+
filter_name6.change(fn=update_gfciwp, inputs=filter_name6)
|
| 327 |
+
confidence_scores = {'Triplex - Standard': filter_name3.value,'Duplex - Standard': filter_name2.value,'Singleplex - Standard': filter_name1.value,'Duplex - GFCI': filter_name5.value,'Duplex - Weatherproof-GFCI':filter_name6.value,'Quadruplex - Standard': filter_name4.value}
|
| 328 |
+
|
| 329 |
+
gr.Markdown("### Step 4: See results with number of symbols counted in the bottom right corner")
|
| 330 |
+
results_button = gr.Button("See Results")
|
| 331 |
+
results_button.click(
|
| 332 |
+
choose_function,
|
| 333 |
+
inputs = [filter_name,input_image],
|
| 334 |
+
outputs = [gr.components.Image(type="numpy", label="Output Image")]
|
| 335 |
+
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
demo.launch()
|
best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77e155c040caeedc89419dbf90090e26a78a8a6aa49b7cbd5ffabe40b1f79e68
|
| 3 |
+
size 14835609
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
sahi
|
| 2 |
+
IPython
|
| 3 |
+
yolov5
|
| 4 |
+
ultralytics==8.0.186
|
| 5 |
+
|
| 6 |
+
# At 8.0.187 ultralytics deprecates ultralytics.yolo, but they have not updated the yolov5 package. Which breaks on import :/
|
| 7 |
+
|
test1.jpg
ADDED
|
Git LFS Details
|
test2.jpg
ADDED
|
test3.jpg
ADDED
|
Git LFS Details
|
test4.jpg
ADDED
|