Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +3 -9
- app.py +338 -0
- best.pt +3 -0
- requirements.txt +7 -0
- test1.jpg +3 -0
- test2.jpg +0 -0
- test3.jpg +3 -0
- test4.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test1.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
test3.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji: 🐢
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: gray
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 3.47.1
|
8 |
app_file: app.py
|
9 |
-
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: receptacle_detection
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 3.42.0
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
import requests
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
from sahi.utils.yolov5 import (
|
8 |
+
download_yolov5s6_model,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
# import required functions, classes
|
13 |
+
from sahi import AutoDetectionModel
|
14 |
+
from sahi.utils.cv import read_image
|
15 |
+
from sahi.utils.file import download_from_url
|
16 |
+
from sahi.predict import get_prediction, get_sliced_prediction, predict, visualize_object_predictions
|
17 |
+
from IPython.display import Image
|
18 |
+
|
19 |
+
from ultralytics import YOLO
|
20 |
+
import gradio as gr
|
21 |
+
import cv2
|
22 |
+
import requests
|
23 |
+
import os
|
24 |
+
|
25 |
+
from ultralytics import YOLO
|
26 |
+
|
27 |
+
|
28 |
+
yolov5_model_path = 'best.pt'
|
29 |
+
download_yolov5s6_model(destination_path=yolov5_model_path)
|
30 |
+
detection_model = AutoDetectionModel.from_pretrained(
|
31 |
+
model_type='yolov5',
|
32 |
+
model_path=yolov5_model_path,
|
33 |
+
confidence_threshold=0.01,
|
34 |
+
device="cpu", # or 'cuda:0'
|
35 |
+
)
|
36 |
+
|
37 |
+
#model = YOLO('/home/ubuntu/Receptacle_Detection_Demo/best.pt')
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
demo = gr.Blocks()
|
42 |
+
|
43 |
+
EXAMPLES = [
|
44 |
+
[ "test1.jpg"],
|
45 |
+
["test2.jpg"],
|
46 |
+
["test3.jpg"],
|
47 |
+
["test4.jpg"],
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
def with_labels(image_path):
|
52 |
+
result = get_sliced_prediction(
|
53 |
+
image_path,
|
54 |
+
detection_model,
|
55 |
+
slice_height = 512,
|
56 |
+
slice_width = 512,
|
57 |
+
overlap_height_ratio = 0.12,
|
58 |
+
overlap_width_ratio = 0.12)
|
59 |
+
#result.export_visuals(export_dir="/home/ubuntu/Receptacle_Detection_Demo/")
|
60 |
+
#image = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/prediction_visual.png")
|
61 |
+
#img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
62 |
+
|
63 |
+
count = -1
|
64 |
+
new_list=[]
|
65 |
+
for i in result.object_prediction_list:
|
66 |
+
count += 1
|
67 |
+
print(i)
|
68 |
+
score = i.score
|
69 |
+
value = score.value
|
70 |
+
category = i.category
|
71 |
+
category_name = category.name
|
72 |
+
if value > confidence_scores[category_name]:
|
73 |
+
print(value)
|
74 |
+
print(confidence_scores[category_name])
|
75 |
+
new_list.append(result.object_prediction_list[count])
|
76 |
+
|
77 |
+
img_converted = cv2.cvtColor(image_path, cv2.COLOR_BGR2RGB)
|
78 |
+
numpydata = np.asarray(img_converted)
|
79 |
+
visualize_object_predictions(
|
80 |
+
numpydata,
|
81 |
+
object_prediction_list = new_list,
|
82 |
+
text_size=1,
|
83 |
+
text_th=1,
|
84 |
+
hide_labels = 0,
|
85 |
+
rect_th=3,
|
86 |
+
output_dir='/home/ubuntu/Receptacle_Detection_Demo/',
|
87 |
+
file_name = 'result',
|
88 |
+
export_format = 'png')
|
89 |
+
image2 = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/result.png")
|
90 |
+
img_rgb = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
|
91 |
+
|
92 |
+
|
93 |
+
class_counts = {}
|
94 |
+
|
95 |
+
|
96 |
+
predictions = new_list
|
97 |
+
for i in predictions:
|
98 |
+
category = i.category
|
99 |
+
category_name = category.name
|
100 |
+
if category_name not in class_counts:
|
101 |
+
class_counts[category_name] = 1
|
102 |
+
else:
|
103 |
+
class_counts[category_name] += 1
|
104 |
+
|
105 |
+
|
106 |
+
legend_text = 'Symbols Counted:'
|
107 |
+
for class_name, count in class_counts.items():
|
108 |
+
legend_text += f' {class_name}: {count} |'
|
109 |
+
|
110 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
111 |
+
font_scale = 1
|
112 |
+
font_color = (255, 255, 255)
|
113 |
+
font_thickness = 2
|
114 |
+
legend_bg_color = (131, 79, 0)
|
115 |
+
legend_padding = 10
|
116 |
+
|
117 |
+
legend_size, _ = cv2.getTextSize(legend_text, font, font_scale, font_thickness)
|
118 |
+
legend_bg_height = legend_size[1] + 2 * legend_padding
|
119 |
+
legend_bg_width = legend_size[0] + 2 * legend_padding
|
120 |
+
|
121 |
+
legend_bg = np.zeros((legend_bg_height, legend_bg_width, 3), dtype=np.uint8)
|
122 |
+
legend_bg[:] = legend_bg_color
|
123 |
+
cv2.putText(legend_bg, legend_text, (legend_padding, legend_padding + legend_size[1]), font,
|
124 |
+
font_scale, font_color, font_thickness)
|
125 |
+
|
126 |
+
img_height, img_width, _ = img_rgb.shape
|
127 |
+
legend_x = img_width - legend_bg_width
|
128 |
+
legend_y = img_height - legend_bg_height
|
129 |
+
|
130 |
+
img_rgb[legend_y:, legend_x:, :] = legend_bg
|
131 |
+
|
132 |
+
result_image_path = '/home/ubuntu/Receptacle_Detection_Demo/result_with_legend.png'
|
133 |
+
cv2.imwrite(result_image_path, img_rgb)
|
134 |
+
|
135 |
+
return cv2.cvtColor(cv2.imread(result_image_path), cv2.COLOR_BGR2RGB)
|
136 |
+
|
137 |
+
def without_labels(image_path):
|
138 |
+
result = get_sliced_prediction(
|
139 |
+
image_path,
|
140 |
+
detection_model,
|
141 |
+
slice_height = 512,
|
142 |
+
slice_width = 512,
|
143 |
+
overlap_height_ratio = 0.12,
|
144 |
+
overlap_width_ratio = 0.12)
|
145 |
+
#result.export_visuals(export_dir="/home/ubuntu/Receptacle_Detection_Demo/")
|
146 |
+
#image = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/prediction_visual.png")
|
147 |
+
#img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
|
148 |
+
|
149 |
+
count = -1
|
150 |
+
new_list=[]
|
151 |
+
for i in result.object_prediction_list:
|
152 |
+
count += 1
|
153 |
+
print(i)
|
154 |
+
score = i.score
|
155 |
+
value = score.value
|
156 |
+
category = i.category
|
157 |
+
category_name = category.name
|
158 |
+
if value > confidence_scores[category_name]:
|
159 |
+
print(value)
|
160 |
+
print(confidence_scores[category_name])
|
161 |
+
new_list.append(result.object_prediction_list[count])
|
162 |
+
|
163 |
+
img_converted = cv2.cvtColor(image_path, cv2.COLOR_BGR2RGB)
|
164 |
+
numpydata = np.asarray(img_converted)
|
165 |
+
visualize_object_predictions(
|
166 |
+
numpydata,
|
167 |
+
object_prediction_list = new_list,
|
168 |
+
hide_labels = 1,
|
169 |
+
rect_th=3,
|
170 |
+
output_dir='/home/ubuntu/Receptacle_Detection_Demo/',
|
171 |
+
file_name = 'result',
|
172 |
+
export_format = 'png')
|
173 |
+
image2 = cv2.imread("/home/ubuntu/Receptacle_Detection_Demo/result.png")
|
174 |
+
img_rgb = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
|
175 |
+
|
176 |
+
|
177 |
+
class_counts = {}
|
178 |
+
|
179 |
+
|
180 |
+
predictions = new_list
|
181 |
+
for i in predictions:
|
182 |
+
category = i.category
|
183 |
+
category_name = category.name
|
184 |
+
if category_name not in class_counts:
|
185 |
+
class_counts[category_name] = 1
|
186 |
+
else:
|
187 |
+
class_counts[category_name] += 1
|
188 |
+
|
189 |
+
|
190 |
+
legend_text = 'Symbols Counted:'
|
191 |
+
for class_name, count in class_counts.items():
|
192 |
+
legend_text += f' {class_name}: {count} |'
|
193 |
+
|
194 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
195 |
+
font_scale = 1.5
|
196 |
+
font_color = (255, 255, 255)
|
197 |
+
font_thickness = 2
|
198 |
+
legend_bg_color = (131, 79, 0)
|
199 |
+
legend_padding = 10
|
200 |
+
|
201 |
+
legend_size, _ = cv2.getTextSize(legend_text, font, font_scale, font_thickness)
|
202 |
+
legend_bg_height = legend_size[1] + 2 * legend_padding
|
203 |
+
legend_bg_width = legend_size[0] + 2 * legend_padding
|
204 |
+
|
205 |
+
legend_bg = np.zeros((legend_bg_height, legend_bg_width, 3), dtype=np.uint8)
|
206 |
+
legend_bg[:] = legend_bg_color
|
207 |
+
cv2.putText(legend_bg, legend_text, (legend_padding, legend_padding + legend_size[1]), font,
|
208 |
+
font_scale, font_color, font_thickness)
|
209 |
+
|
210 |
+
img_height, img_width, _ = img_rgb.shape
|
211 |
+
legend_x = img_width - legend_bg_width
|
212 |
+
legend_y = img_height - legend_bg_height
|
213 |
+
|
214 |
+
img_rgb[legend_y:, legend_x:, :] = legend_bg
|
215 |
+
|
216 |
+
result_image_path = '/home/ubuntu/Receptacle_Detection_Demo/result_with_legend.png'
|
217 |
+
cv2.imwrite(result_image_path, img_rgb)
|
218 |
+
|
219 |
+
return cv2.cvtColor(cv2.imread(result_image_path), cv2.COLOR_BGR2RGB)
|
220 |
+
|
221 |
+
def choose_function(choice, input_text):
|
222 |
+
if choice == "With Labels":
|
223 |
+
return with_labels(input_text)
|
224 |
+
else:
|
225 |
+
return without_labels(input_text)
|
226 |
+
print("Starting the demo...")
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
def update_duplex(val):
|
231 |
+
confidence_scores['Duplex - Standard'] = val
|
232 |
+
return 'updated!'
|
233 |
+
def update_single(val):
|
234 |
+
confidence_scores['Singleplex - Standard'] = val
|
235 |
+
return 'updated!'
|
236 |
+
|
237 |
+
def update_triplex(val):
|
238 |
+
confidence_scores['Triplex - Standard'] = val
|
239 |
+
return 'updated!'
|
240 |
+
|
241 |
+
def update_quadruplex(val):
|
242 |
+
confidence_scores['Quadruplex - Standard'] = val
|
243 |
+
return 'updated!'
|
244 |
+
|
245 |
+
def update_gfci(val):
|
246 |
+
confidence_scores['Duplex - GFCI'] = val
|
247 |
+
return 'updated!'
|
248 |
+
|
249 |
+
def update_gfciwp(val):
|
250 |
+
confidence_scores['Duplex - Weatherproof-GFCI'] = val
|
251 |
+
return 'updated!'
|
252 |
+
|
253 |
+
theme = gr.themes.Soft()
|
254 |
+
|
255 |
+
with gr.Blocks(theme=theme) as demo:
|
256 |
+
gr.Markdown(
|
257 |
+
"""
|
258 |
+
<h1 align="center">Receptacle Detector for Takeoff Automation</h1>
|
259 |
+
"""
|
260 |
+
)
|
261 |
+
|
262 |
+
gr.Markdown("### Step 1: Upload an image")
|
263 |
+
|
264 |
+
with gr.Row():
|
265 |
+
input_image = gr.Image(
|
266 |
+
label="Upload an image here.", source="upload", interactive=True,
|
267 |
+
)
|
268 |
+
examples = gr.Examples(
|
269 |
+
examples=EXAMPLES, inputs=[input_image], examples_per_page=4, label="Examples to use.",
|
270 |
+
)
|
271 |
+
|
272 |
+
|
273 |
+
gr.Markdown("### Step 2: Choose either \n With labels: See receptacles detected with type detected/confidence score included\n Without labels: See only bounding boxes")
|
274 |
+
filter_name = gr.Dropdown(
|
275 |
+
choices=["With Labels", "Without Labels"], label="With/Without Labels", interactive=True
|
276 |
+
)
|
277 |
+
gr.Markdown("### Step 3: Choose confidence score levels for each symbol detected (default are optimal scores)")
|
278 |
+
filter_name1 = gr.Slider(
|
279 |
+
minimum = .1,
|
280 |
+
maximum = 1,
|
281 |
+
value = .53,
|
282 |
+
interactive = True,
|
283 |
+
label = 'Singleplex',
|
284 |
+
)
|
285 |
+
filter_name2 = gr.Slider(
|
286 |
+
minimum = .1,
|
287 |
+
maximum = 1,
|
288 |
+
value = .66,
|
289 |
+
interactive = True,
|
290 |
+
label = 'Duplex',
|
291 |
+
)
|
292 |
+
filter_name3 = gr.Slider(
|
293 |
+
minimum = .1,
|
294 |
+
maximum = 1,
|
295 |
+
value = .65,
|
296 |
+
interactive = True,
|
297 |
+
label = 'Triplex',
|
298 |
+
)
|
299 |
+
filter_name4 = gr.Slider(
|
300 |
+
minimum = .1,
|
301 |
+
maximum = 1,
|
302 |
+
value = .63,
|
303 |
+
interactive = True,
|
304 |
+
label = 'Quadruplex',
|
305 |
+
)
|
306 |
+
filter_name5 = gr.Slider(
|
307 |
+
minimum = .1,
|
308 |
+
maximum = 1,
|
309 |
+
value = .31,
|
310 |
+
interactive = True,
|
311 |
+
label = 'GFCI',
|
312 |
+
)
|
313 |
+
filter_name6 = gr.Slider(
|
314 |
+
minimum = .1,
|
315 |
+
maximum = 1,
|
316 |
+
value = .33,
|
317 |
+
interactive = True,
|
318 |
+
label = 'GFCI/WP',
|
319 |
+
)
|
320 |
+
|
321 |
+
filter_name2.change(fn=update_duplex, inputs=filter_name2)
|
322 |
+
filter_name1.change(fn=update_single, inputs=filter_name1)
|
323 |
+
filter_name3.change(fn=update_triplex, inputs=filter_name3)
|
324 |
+
filter_name4.change(fn=update_quadruplex, inputs=filter_name4)
|
325 |
+
filter_name5.change(fn=update_gfci, inputs=filter_name5)
|
326 |
+
filter_name6.change(fn=update_gfciwp, inputs=filter_name6)
|
327 |
+
confidence_scores = {'Triplex - Standard': filter_name3.value,'Duplex - Standard': filter_name2.value,'Singleplex - Standard': filter_name1.value,'Duplex - GFCI': filter_name5.value,'Duplex - Weatherproof-GFCI':filter_name6.value,'Quadruplex - Standard': filter_name4.value}
|
328 |
+
|
329 |
+
gr.Markdown("### Step 4: See results with number of symbols counted in the bottom right corner")
|
330 |
+
results_button = gr.Button("See Results")
|
331 |
+
results_button.click(
|
332 |
+
choose_function,
|
333 |
+
inputs = [filter_name,input_image],
|
334 |
+
outputs = [gr.components.Image(type="numpy", label="Output Image")]
|
335 |
+
|
336 |
+
)
|
337 |
+
|
338 |
+
demo.launch()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77e155c040caeedc89419dbf90090e26a78a8a6aa49b7cbd5ffabe40b1f79e68
|
3 |
+
size 14835609
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sahi
|
2 |
+
IPython
|
3 |
+
yolov5
|
4 |
+
ultralytics==8.0.186
|
5 |
+
|
6 |
+
# At 8.0.187 ultralytics deprecates ultralytics.yolo, but they have not updated the yolov5 package. Which breaks on import :/
|
7 |
+
|
test1.jpg
ADDED
![]() |
Git LFS Details
|
test2.jpg
ADDED
![]() |
test3.jpg
ADDED
![]() |
Git LFS Details
|
test4.jpg
ADDED
![]() |