File size: 12,000 Bytes
30d6225
 
 
c152910
30d6225
 
 
 
888b5aa
 
30d6225
c152910
30d6225
9180057
30d6225
 
 
 
 
db537bc
 
 
c152910
 
 
888b5aa
30d6225
db537bc
888b5aa
db537bc
 
c152910
db537bc
4148e9b
db537bc
c152910
4148e9b
 
 
 
db537bc
4148e9b
 
 
db537bc
4148e9b
 
c152910
888b5aa
30d6225
 
 
888b5aa
30d6225
 
 
 
 
888b5aa
30d6225
 
 
 
 
888b5aa
30d6225
 
 
 
 
888b5aa
30d6225
 
888b5aa
30d6225
 
f17f462
888b5aa
30d6225
888b5aa
30d6225
 
888b5aa
30d6225
 
888b5aa
30d6225
 
888b5aa
30d6225
9ebf911
30d6225
db537bc
888b5aa
db537bc
 
 
 
888b5aa
9ebf911
db537bc
 
 
 
888b5aa
db537bc
 
 
888b5aa
 
 
 
 
 
db537bc
888b5aa
db537bc
 
 
 
 
 
 
 
 
 
888b5aa
 
 
 
db537bc
 
 
888b5aa
 
db537bc
4148e9b
db537bc
888b5aa
db537bc
 
9ebf911
30d6225
888b5aa
 
 
 
 
 
 
 
30d6225
888b5aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db537bc
888b5aa
 
 
 
 
 
 
 
 
 
 
 
db537bc
888b5aa
 
 
db537bc
c152910
888b5aa
c152910
 
 
9ebf911
888b5aa
 
 
9ebf911
888b5aa
 
 
c152910
db537bc
c152910
 
f17f462
c152910
888b5aa
c152910
 
 
888b5aa
 
 
 
db537bc
888b5aa
c152910
9ebf911
30d6225
db537bc
30d6225
db537bc
888b5aa
 
 
 
db537bc
 
9ebf911
888b5aa
9ebf911
db537bc
888b5aa
 
c152910
 
db537bc
888b5aa
 
 
 
4148e9b
888b5aa
 
 
 
 
 
 
30d6225
888b5aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c152910
 
 
db537bc
888b5aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
from threading import Thread
import time

import gradio as gr
import requests
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)

# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
MAX_INPUT_TOKEN_LENGTH = 4096
device = "cuda" if torch.cuda.is_available() else "cpu"

# Prompt for Layout Analysis
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.

1. Bbox format: [x1, y1, x2, y2]

2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].

3. Text Extraction & Formatting Rules:
    - Picture: For the 'Picture' category, the text field should be omitted.
    - Formula: Format its text as LaTeX.
    - Table: Format its text as HTML.
    - All Others (Text, Title, etc.): Format their text as Markdown.

4. Constraints:
    - The output text must be the original text from the image, with no translation.
    - All layout elements must be sorted according to human reading order.

5. Final Output: The entire output must be a single JSON object.
"""

# Load Models
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_C = "nanonets/Nanonets-OCR-s"
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
).to(device).eval()


# Utility functions
def is_arabic_text(text: str) -> bool:
    """Check if text contains mostly Arabic characters."""
    if not text:
        return False
    # Simplified check for Arabic characters in the given text
    arabic_chars = 0
    total_chars = 0
    for char in text:
        if char.isalpha():
            total_chars += 1
            if '\u0600' <= char <= '\u06FF':
                arabic_chars += 1
    return total_chars > 0 and (arabic_chars / total_chars) > 0.5

def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
    """Convert layout JSON to markdown format."""
    import base64
    from io import BytesIO
    markdown_lines = []
    try:
        # Sort items by reading order (top to bottom, left to right)
        sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
        for item in sorted_items:
            category = item.get('category', '')
            text = item.get(text_key, '')
            bbox = item.get('bbox', [])

            if category == 'Picture':
                if bbox and len(bbox) == 4:
                    try:
                        x1, y1, x2, y2 = [int(coord) for coord in bbox]
                        cropped_img = image.crop((x1, y1, x2, y2))
                        buffer = BytesIO()
                        cropped_img.save(buffer, format='PNG')
                        img_data = base64.b64encode(buffer.getvalue()).decode()
                        markdown_lines.append(f"![Image](data:image/png;base64,{img_data})\n")
                    except Exception as e:
                        markdown_lines.append("![Image](Image region detected)\n")
            elif not text:
                continue
            elif category == 'Title':
                markdown_lines.append(f"# {text}\n")
            elif category == 'Section-header':
                markdown_lines.append(f"## {text}\n")
            elif category == 'Text':
                markdown_lines.append(f"{text}\n")
            elif category == 'List-item':
                markdown_lines.append(f"- {text}\n")
            elif category == 'Table' and text.strip().startswith('<'):
                markdown_lines.append(f"{text}\n")
            elif category == 'Formula' and (text.strip().startswith('$') or '\\' in text):
                markdown_lines.append(f"$$\n{text}\n$$\n")
            elif category == 'Caption':
                markdown_lines.append(f"*{text}*\n")
            elif category == 'Footnote':
                 markdown_lines.append(f"^{text}^\n")
            elif category not in ['Page-header', 'Page-footer']:
                markdown_lines.append(f"{text}\n")
    except Exception as e:
        print(f"Error converting to markdown: {e}")
        return f"### Error converting to Markdown\n\n```\n{str(layout_data)}\n```"
    return "\n".join(markdown_lines)


@spaces.GPU
def generate_and_process(model_name: str, image: Image.Image, max_new_tokens: int):
    """
    Generates a response using streaming, then processes the final output.
    Yields updates for the raw stream, final markdown, and JSON output.
    """
    if image is None:
        yield "Please upload an image.", "Please upload an image.", None
        return

    # 1. Select Model and Processor
    if model_name == "Camel-Doc-OCR-062825":
        processor, model = processor_m, model_m
    elif model_name == "Megalodon-OCR-Sync-0713":
        processor, model = processor_t, model_t
    elif model_name == "Nanonets-OCR-s":
        processor, model = processor_c, model_c
    elif model_name == "MonkeyOCR-Recognition":
        processor, model = processor_g, model_g
    else:
        yield "Invalid model selected.", "Invalid model selected.", None
        return

    # 2. Prepare inputs for the model
    messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full],
        images=[image],
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)

    # 3. Stream the generation
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    # Initial placeholder yield
    yield buffer, "⏳ Generating response...", None

    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)  # Small delay for smoother streaming
        yield buffer, "⏳ Generating response...", None

    # 4. Process the final buffer content
    try:
        json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
        json_str = json_match.group(1) if json_match else buffer
        layout_data = json.loads(json_str)
        
        markdown_content = layoutjson2md(image, layout_data)
        
        # Final yield with all processed content
        yield buffer, markdown_content, layout_data

    except json.JSONDecodeError:
        error_msg = "❌ Failed to parse JSON from model output."
        yield buffer, error_msg, {"error": "JSONDecodeError", "raw_output": buffer}
    except Exception as e:
        error_msg = f"❌ An error occurred during post-processing: {e}"
        yield buffer, error_msg, {"error": str(e), "raw_output": buffer}


def create_gradio_interface():
    """Create the Gradio interface."""
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
    .process-button { 
        border: none !important; color: white !important; font-weight: bold !important; 
        background-color: blue !important;
    }
    .process-button:hover { 
        background-color: darkblue !important; transform: translateY(-2px) !important; 
        box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; 
    }
    """
    with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>Dot<span style="color: red;">●</span><strong></strong>OCR Comparator</h1>
            <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
                Advanced vision-language model for image to markdown document processing
            </p>
        </div>
        """)
        
        # Keep track of the uploaded image
        image_state = gr.State(None)

        with gr.Row():
            # Left column - Input and controls
            with gr.Column(scale=1):
                model_choice = gr.Radio(
                    choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"],
                    label="Select Model",
                    value="Camel-Doc-OCR-062825"
                )
                file_input = gr.Image(
                    label="Upload Image",
                    type="pil",
                    sources=['upload']
                )
                with gr.Accordion("Advanced Settings", open=False):
                    max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
                
                process_btn = gr.Button("πŸš€ Process Document", variant="primary", elem_classes=["process-button"], size="lg")
                clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")

            # Right column - Results
            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("πŸ“ Extracted Content"):
                        output_stream = gr.Textbox(label="Raw Output Stream", interactive=False, lines=10, show_copy_button=True)
                        with gr.Accordion("(Formatted Result)", open=True):
                            markdown_output = gr.Markdown(label="Formatted Result (Result.md)")
                    
                    with gr.Tab("πŸ“‹ Layout JSON"):
                        json_output = gr.JSON(label="Layout Analysis Results (JSON)", value=None)

        # Event Handlers
        def handle_file_upload(image):
            """Store the uploaded image in the state."""
            return image

        def clear_all():
            """Clear all data and reset the interface."""
            return None, None, "Click 'Process Document' to see extracted content...", None, None

        file_input.upload(handle_file_upload, inputs=[file_input], outputs=[image_state])
        
        process_btn.click(
            generate_and_process,
            inputs=[model_choice, image_state, max_new_tokens],
            outputs=[output_stream, markdown_output, json_output]
        )

        clear_btn.click(
            clear_all,
            outputs=[file_input, image_state, markdown_output, json_output, output_stream]
        )

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True)