Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,152 +6,59 @@ import traceback
|
|
6 |
from io import BytesIO
|
7 |
from typing import Any, Dict, List, Optional, Tuple
|
8 |
import re
|
9 |
-
import warnings
|
10 |
|
11 |
import fitz # PyMuPDF
|
12 |
import gradio as gr
|
13 |
import requests
|
14 |
import torch
|
15 |
-
from PIL import Image, ImageDraw, ImageFont
|
16 |
-
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
|
17 |
from huggingface_hub import snapshot_download
|
|
|
18 |
from qwen_vl_utils import process_vision_info
|
19 |
-
|
20 |
-
# Suppress the FutureWarning for cleaner output (optional)
|
21 |
-
warnings.filterwarnings(
|
22 |
-
"ignore",
|
23 |
-
category=FutureWarning,
|
24 |
-
message="Both `num_logits_to_keep` and `logits_to_keep` are set"
|
25 |
-
)
|
26 |
-
|
27 |
-
# JavaScript for theme refresh
|
28 |
-
js_func = """
|
29 |
-
function refresh() {
|
30 |
-
const url = new URL(window.location);
|
31 |
-
if (url.searchParams.get('__theme') !== 'dark') {
|
32 |
-
url.searchParams.set('__theme', 'dark');
|
33 |
-
window.location.href = url.href;
|
34 |
-
}
|
35 |
-
}
|
36 |
-
"""
|
37 |
|
38 |
# Constants
|
39 |
MIN_PIXELS = 3136
|
40 |
MAX_PIXELS = 11289600
|
41 |
IMAGE_FACTOR = 28
|
42 |
|
43 |
-
#
|
44 |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
45 |
|
46 |
1. Bbox format: [x1, y1, x2, y2]
|
47 |
-
|
|
|
|
|
48 |
3. Text Extraction & Formatting Rules:
|
49 |
-
- Picture:
|
50 |
-
- Formula:
|
51 |
-
- Table:
|
52 |
-
- Others:
|
53 |
-
4. Constraints:
|
54 |
-
- Use original text, no translation
|
55 |
-
- Sort elements by human reading order
|
56 |
-
5. Final Output: Single JSON object
|
57 |
-
"""
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
model_id = "rednote-hilab/dots.ocr"
|
63 |
-
model_path = "./models/dots-ocr-local"
|
64 |
-
snapshot_download(
|
65 |
-
repo_id=model_id,
|
66 |
-
local_dir=model_path,
|
67 |
-
local_dir_use_symlinks=False,
|
68 |
-
)
|
69 |
-
model = AutoModelForCausalLM.from_pretrained(
|
70 |
-
model_path,
|
71 |
-
attn_implementation="flash_attention_2",
|
72 |
-
torch_dtype=torch.bfloat16,
|
73 |
-
device_map="auto",
|
74 |
-
trust_remote_code=True
|
75 |
-
)
|
76 |
-
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
77 |
-
elif model_name == "Dolphin":
|
78 |
-
model_id = "ByteDance/Dolphin"
|
79 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
80 |
-
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
81 |
-
model.eval()
|
82 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
83 |
-
model.to(device)
|
84 |
-
model = model.half() # Use half precision
|
85 |
-
else:
|
86 |
-
raise ValueError(f"Unknown model: {model_name}")
|
87 |
-
return model, processor
|
88 |
-
|
89 |
-
# Inference functions
|
90 |
-
def inference_dots_ocr(model, processor, image, prompt, max_new_tokens):
|
91 |
-
messages = [
|
92 |
-
{
|
93 |
-
"role": "user",
|
94 |
-
"content": [
|
95 |
-
{"type": "image", "image": image},
|
96 |
-
{"type": "text", "text": prompt}
|
97 |
-
]
|
98 |
-
}
|
99 |
-
]
|
100 |
-
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
101 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
102 |
-
inputs = processor(
|
103 |
-
text=[text],
|
104 |
-
images=image_inputs,
|
105 |
-
videos=video_inputs,
|
106 |
-
padding=True,
|
107 |
-
return_tensors="pt",
|
108 |
-
)
|
109 |
-
inputs = inputs.to(model.device)
|
110 |
-
with torch.no_grad():
|
111 |
-
generated_ids = model.generate(
|
112 |
-
**inputs,
|
113 |
-
max_new_tokens=max_new_tokens,
|
114 |
-
do_sample=False # Temperature removed previously to fix another warning
|
115 |
-
)
|
116 |
-
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
117 |
-
output_text = processor.batch_decode(
|
118 |
-
generated_ids_trimmed,
|
119 |
-
skip_special_tokens=True,
|
120 |
-
clean_up_tokenization_spaces=False
|
121 |
-
)
|
122 |
-
return output_text[0] if output_text else ""
|
123 |
-
|
124 |
-
def inference_dolphin(model, processor, image):
|
125 |
-
pixel_values = processor(image, return_tensors="pt").pixel_values.to(model.device).half()
|
126 |
-
generated_ids = model.generate(pixel_values)
|
127 |
-
generated_text = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
128 |
-
return generated_text
|
129 |
-
|
130 |
-
# Load models at startup
|
131 |
-
models = {
|
132 |
-
"dots.ocr": load_model("dots.ocr"),
|
133 |
-
"Dolphin": load_model("Dolphin")
|
134 |
-
}
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
"images": [],
|
139 |
-
"current_page": 0,
|
140 |
-
"total_pages": 0,
|
141 |
-
"file_type": None,
|
142 |
-
"is_parsed": False,
|
143 |
-
"results": []
|
144 |
-
}
|
145 |
|
146 |
-
# Utility
|
147 |
def round_by_factor(number: int, factor: int) -> int:
|
|
|
148 |
return round(number / factor) * factor
|
149 |
|
150 |
-
def smart_resize(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
if max(height, width) / min(height, width) > 200:
|
152 |
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
|
153 |
h_bar = max(factor, round_by_factor(height, factor))
|
154 |
w_bar = max(factor, round_by_factor(width, factor))
|
|
|
155 |
if h_bar * w_bar > max_pixels:
|
156 |
beta = math.sqrt((height * width) / max_pixels)
|
157 |
h_bar = round_by_factor(height / beta, factor)
|
@@ -163,6 +70,7 @@ def smart_resize(height: int, width: int, factor: int = 28, min_pixels: int = 31
|
|
163 |
return h_bar, w_bar
|
164 |
|
165 |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
|
|
166 |
if isinstance(image_input, str):
|
167 |
if image_input.startswith(("http://", "https://")):
|
168 |
response = requests.get(image_input)
|
@@ -173,20 +81,29 @@ def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
|
173 |
image = image_input.convert('RGB')
|
174 |
else:
|
175 |
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
176 |
-
|
|
|
177 |
min_pixels = min_pixels or MIN_PIXELS
|
178 |
max_pixels = max_pixels or MAX_PIXELS
|
179 |
-
height, width = smart_resize(
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
image = image.resize((width, height), Image.LANCZOS)
|
|
|
181 |
return image
|
182 |
|
183 |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
|
|
184 |
images = []
|
185 |
try:
|
186 |
pdf_document = fitz.open(pdf_path)
|
187 |
for page_num in range(len(pdf_document)):
|
188 |
page = pdf_document.load_page(page_num)
|
189 |
-
mat = fitz.Matrix(2.0, 2.0)
|
190 |
pix = page.get_pixmap(matrix=mat)
|
191 |
img_data = pix.tobytes("ppm")
|
192 |
image = Image.open(BytesIO(img_data)).convert('RGB')
|
@@ -198,66 +115,43 @@ def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
|
198 |
return images
|
199 |
|
200 |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
|
|
201 |
img_copy = image.copy()
|
202 |
draw = ImageDraw.Draw(img_copy)
|
|
|
203 |
colors = {
|
204 |
-
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1',
|
205 |
-
'
|
206 |
-
'
|
|
|
207 |
}
|
|
|
208 |
try:
|
209 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
|
210 |
-
except Exception:
|
211 |
-
font = ImageFont.load_default()
|
212 |
-
try:
|
213 |
for item in layout_data:
|
214 |
if 'bbox' in item and 'category' in item:
|
215 |
bbox = item['bbox']
|
216 |
category = item['category']
|
217 |
color = colors.get(category, '#000000')
|
|
|
218 |
draw.rectangle(bbox, outline=color, width=2)
|
|
|
219 |
label = category
|
220 |
label_bbox = draw.textbbox((0, 0), label, font=font)
|
221 |
-
label_width = label_bbox[2] - label_bbox[0]
|
222 |
-
|
223 |
-
label_x = bbox[0]
|
224 |
-
label_y = max(0, bbox[1] - label_height - 2)
|
225 |
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
|
226 |
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
|
227 |
except Exception as e:
|
228 |
print(f"Error drawing layout: {e}")
|
|
|
229 |
return img_copy
|
230 |
|
231 |
-
def is_arabic_text(text: str) -> bool:
|
232 |
-
if not text:
|
233 |
-
return False
|
234 |
-
header_pattern = r'^#{1,6}\s+(.+)$'
|
235 |
-
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
|
236 |
-
content_text = []
|
237 |
-
for line in text.split('\n'):
|
238 |
-
line = line.strip()
|
239 |
-
if not line:
|
240 |
-
continue
|
241 |
-
header_match = re.match(header_pattern, line, re.MULTILINE)
|
242 |
-
if header_match:
|
243 |
-
content_text.append(header_match.group(1))
|
244 |
-
continue
|
245 |
-
if re.match(paragraph_pattern, line, re.MULTILINE):
|
246 |
-
content_text.append(line)
|
247 |
-
if not content_text:
|
248 |
-
return False
|
249 |
-
combined_text = ' '.join(content_text)
|
250 |
-
arabic_chars = 0
|
251 |
-
total_chars = 0
|
252 |
-
for char in combined_text:
|
253 |
-
if char.isalpha():
|
254 |
-
total_chars += 1
|
255 |
-
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
|
256 |
-
arabic_chars += 1
|
257 |
-
return total_chars > 0 and (arabic_chars / total_chars) > 0.5
|
258 |
-
|
259 |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
|
|
260 |
import base64
|
|
|
261 |
markdown_lines = []
|
262 |
try:
|
263 |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
@@ -265,23 +159,21 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
265 |
category = item.get('category', '')
|
266 |
text = item.get(text_key, '')
|
267 |
bbox = item.get('bbox', [])
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
else:
|
284 |
-
markdown_lines.append('<image-card alt="Image" src="Image detected" ></image-card>\n')
|
285 |
elif not text:
|
286 |
continue
|
287 |
elif category == 'Title':
|
@@ -293,15 +185,9 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
293 |
elif category == 'List-item':
|
294 |
markdown_lines.append(f"- {text}\n")
|
295 |
elif category == 'Table':
|
296 |
-
if text.strip().startswith('<')
|
297 |
-
markdown_lines.append(f"{text}\n")
|
298 |
-
else:
|
299 |
-
markdown_lines.append(f"**Table:** {text}\n")
|
300 |
elif category == 'Formula':
|
301 |
-
if text.strip().startswith('$') or '\\' in text
|
302 |
-
markdown_lines.append(f"$$ \n{text}\n $$\n") # Fixed formatting, removed extra spaces
|
303 |
-
else:
|
304 |
-
markdown_lines.append(f"**Formula:** {text}\n")
|
305 |
elif category == 'Caption':
|
306 |
markdown_lines.append(f"*{text}*\n")
|
307 |
elif category == 'Footnote':
|
@@ -314,37 +200,122 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
314 |
except Exception as e:
|
315 |
print(f"Error converting to markdown: {e}")
|
316 |
return str(layout_data)
|
|
|
317 |
return "\n".join(markdown_lines)
|
318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
|
|
320 |
global pdf_cache
|
321 |
if not file_path or not os.path.exists(file_path):
|
322 |
return None, "No file selected"
|
|
|
323 |
file_ext = os.path.splitext(file_path)[1].lower()
|
324 |
try:
|
325 |
if file_ext == '.pdf':
|
326 |
images = load_images_from_pdf(file_path)
|
327 |
if not images:
|
328 |
return None, "Failed to load PDF"
|
329 |
-
pdf_cache.update({
|
330 |
-
"images": images,
|
331 |
-
"current_page": 0,
|
332 |
-
"total_pages": len(images),
|
333 |
-
"file_type": "pdf",
|
334 |
-
"is_parsed": False,
|
335 |
-
"results": []
|
336 |
-
})
|
337 |
return images[0], f"Page 1 / {len(images)}"
|
338 |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
339 |
image = Image.open(file_path).convert('RGB')
|
340 |
-
pdf_cache.update({
|
341 |
-
"images": [image],
|
342 |
-
"current_page": 0,
|
343 |
-
"total_pages": 1,
|
344 |
-
"file_type": "image",
|
345 |
-
"is_parsed": False,
|
346 |
-
"results": []
|
347 |
-
})
|
348 |
return image, "Page 1 / 1"
|
349 |
else:
|
350 |
return None, f"Unsupported file format: {file_ext}"
|
@@ -352,108 +323,28 @@ def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
|
352 |
print(f"Error loading file: {e}")
|
353 |
return None, f"Error loading file: {str(e)}"
|
354 |
|
355 |
-
@spaces.GPU()
|
356 |
-
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
|
357 |
-
global pdf_cache
|
358 |
-
if not file_path:
|
359 |
-
return None, "Please upload a file first.", None
|
360 |
-
model, processor = models[model_choice]
|
361 |
-
image, page_info = load_file_for_preview(file_path)
|
362 |
-
if image is None:
|
363 |
-
return None, page_info, None
|
364 |
-
if pdf_cache["file_type"] == "pdf":
|
365 |
-
all_results = []
|
366 |
-
for i, img in enumerate(pdf_cache["images"]):
|
367 |
-
if model_choice == "dots.ocr":
|
368 |
-
raw_output = inference_dots_ocr(model, processor, img, prompt, max_tokens)
|
369 |
-
try:
|
370 |
-
layout_data = json.loads(raw_output)
|
371 |
-
processed_image = draw_layout_on_image(img, layout_data)
|
372 |
-
markdown_content = layoutjson2md(img, layout_data)
|
373 |
-
result = {
|
374 |
-
'processed_image': processed_image,
|
375 |
-
'markdown_content': markdown_content,
|
376 |
-
'layout_result': layout_data
|
377 |
-
}
|
378 |
-
except Exception:
|
379 |
-
result = {
|
380 |
-
'processed_image': img,
|
381 |
-
'markdown_content': raw_output,
|
382 |
-
'layout_result': None
|
383 |
-
}
|
384 |
-
else: # Dolphin
|
385 |
-
text = inference_dolphin(model, processor, img)
|
386 |
-
result = f"## Page {i+1}\n\n{text}" if text else "No text extracted"
|
387 |
-
all_results.append(result)
|
388 |
-
pdf_cache["results"] = all_results
|
389 |
-
pdf_cache["is_parsed"] = True
|
390 |
-
first_result = all_results[0]
|
391 |
-
if model_choice == "dots.ocr":
|
392 |
-
markdown_update = gr.update(value=first_result['markdown_content'], rtl=is_arabic_text(first_result['markdown_content']))
|
393 |
-
return first_result['processed_image'], markdown_update, first_result['layout_result']
|
394 |
-
else:
|
395 |
-
markdown_update = gr.update(value=first_result, rtl=is_arabic_text(first_result))
|
396 |
-
return None, markdown_update, None
|
397 |
-
else:
|
398 |
-
if model_choice == "dots.ocr":
|
399 |
-
raw_output = inference_dots_ocr(model, processor, image, prompt, max_tokens)
|
400 |
-
try:
|
401 |
-
layout_data = json.loads(raw_output)
|
402 |
-
processed_image = draw_layout_on_image(image, layout_data)
|
403 |
-
markdown_content = layoutjson2md(image, layout_data)
|
404 |
-
result = {
|
405 |
-
'processed_image': processed_image,
|
406 |
-
'markdown_content': markdown_content,
|
407 |
-
'layout_result': layout_data
|
408 |
-
}
|
409 |
-
except Exception:
|
410 |
-
result = {
|
411 |
-
'processed_image': image,
|
412 |
-
'markdown_content': raw_output,
|
413 |
-
'layout_result': None
|
414 |
-
}
|
415 |
-
pdf_cache["results"] = [result]
|
416 |
-
else: # Dolphin
|
417 |
-
text = inference_dolphin(model, processor, image)
|
418 |
-
result = text if text else "No text extracted"
|
419 |
-
pdf_cache["results"] = [result]
|
420 |
-
pdf_cache["is_parsed"] = True
|
421 |
-
if model_choice == "dots.ocr":
|
422 |
-
markdown_update = gr.update(value=result['markdown_content'], rtl=is_arabic_text(result['markdown_content']))
|
423 |
-
return result['processed_image'], markdown_update, result['layout_result']
|
424 |
-
else:
|
425 |
-
markdown_update = gr.update(value=result, rtl=is_arabic_text(result))
|
426 |
-
return None, markdown_update, None
|
427 |
-
|
428 |
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
|
|
|
429 |
global pdf_cache
|
430 |
if not pdf_cache["images"]:
|
431 |
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
|
432 |
-
|
433 |
-
|
434 |
-
elif direction == "next":
|
435 |
-
pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
|
436 |
index = pdf_cache["current_page"]
|
437 |
current_image_preview = pdf_cache["images"][index]
|
438 |
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
|
439 |
-
|
|
|
|
|
440 |
result = pdf_cache["results"][index]
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
markdown_content = result
|
447 |
-
processed_img = None
|
448 |
-
layout_json = None
|
449 |
-
else:
|
450 |
-
markdown_content = "Page not processed yet"
|
451 |
-
processed_img = None
|
452 |
-
layout_json = None
|
453 |
-
markdown_update = gr.update(value=markdown_content, rtl=is_arabic_text(markdown_content))
|
454 |
-
return current_image_preview, page_info_html, markdown_update, processed_img, layout_json
|
455 |
|
456 |
def create_gradio_interface():
|
|
|
457 |
css = """
|
458 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
459 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
@@ -471,75 +362,102 @@ def create_gradio_interface():
|
|
471 |
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
|
472 |
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
|
473 |
"""
|
474 |
-
|
|
|
475 |
gr.HTML("""
|
476 |
<div class="title" style="text-align: center">
|
477 |
-
<h1>Dot<span style="color: red;">●</span
|
478 |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
479 |
Advanced vision-language model for image/PDF to markdown document processing
|
480 |
</p>
|
481 |
</div>
|
482 |
""")
|
|
|
483 |
with gr.Row():
|
484 |
with gr.Column(scale=1):
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
|
491 |
with gr.Row():
|
492 |
-
prev_page_btn = gr.Button("
|
493 |
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
494 |
-
next_page_btn = gr.Button("Next
|
495 |
-
model_choice = gr.Radio(
|
496 |
-
choices=["dots.ocr", "Dolphin"],
|
497 |
-
label="Select Model",
|
498 |
-
value="dots.ocr"
|
499 |
-
)
|
500 |
with gr.Accordion("Advanced Settings", open=False):
|
501 |
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
|
502 |
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
|
503 |
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
|
504 |
-
process_btn = gr.Button("
|
505 |
-
clear_btn = gr.Button("Clear
|
|
|
506 |
with gr.Column(scale=2):
|
507 |
with gr.Tabs():
|
508 |
-
with gr.Tab("
|
509 |
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
|
510 |
-
with gr.Tab("
|
511 |
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
|
512 |
-
with gr.Tab("
|
513 |
json_output = gr.JSON(label="Layout Analysis Results", value=None)
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
def handle_file_upload(file_path):
|
521 |
image, page_info = load_file_for_preview(file_path)
|
522 |
return image, page_info
|
523 |
-
|
524 |
def clear_all():
|
525 |
global pdf_cache
|
526 |
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
|
527 |
return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None
|
528 |
-
|
529 |
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
|
530 |
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
|
531 |
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
|
532 |
-
process_btn.click(
|
533 |
-
|
534 |
-
|
535 |
-
outputs=[processed_image, markdown_output, json_output]
|
536 |
-
)
|
537 |
-
clear_btn.click(
|
538 |
-
clear_all,
|
539 |
-
outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output]
|
540 |
-
)
|
541 |
return demo
|
542 |
|
543 |
if __name__ == "__main__":
|
544 |
demo = create_gradio_interface()
|
545 |
-
demo.queue(max_size=
|
|
|
6 |
from io import BytesIO
|
7 |
from typing import Any, Dict, List, Optional, Tuple
|
8 |
import re
|
|
|
9 |
|
10 |
import fitz # PyMuPDF
|
11 |
import gradio as gr
|
12 |
import requests
|
13 |
import torch
|
|
|
|
|
14 |
from huggingface_hub import snapshot_download
|
15 |
+
from PIL import Image, ImageDraw, ImageFont
|
16 |
from qwen_vl_utils import process_vision_info
|
17 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Constants
|
20 |
MIN_PIXELS = 3136
|
21 |
MAX_PIXELS = 11289600
|
22 |
IMAGE_FACTOR = 28
|
23 |
|
24 |
+
# Prompts
|
25 |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
26 |
|
27 |
1. Bbox format: [x1, y1, x2, y2]
|
28 |
+
|
29 |
+
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
30 |
+
|
31 |
3. Text Extraction & Formatting Rules:
|
32 |
+
- Picture: For the 'Picture' category, the text field should be omitted.
|
33 |
+
- Formula: Format its text as LaTeX.
|
34 |
+
- Table: Format its text as HTML.
|
35 |
+
- All Others (Text, Title, etc.): Format their text as Markdown.
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
4. Constraints:
|
38 |
+
- The output text must be the original text from the image, with no translation.
|
39 |
+
- All layout elements must be sorted according to human reading order.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
5. Final Output: The entire output must be a single JSON object.
|
42 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Utility Functions
|
45 |
def round_by_factor(number: int, factor: int) -> int:
|
46 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
47 |
return round(number / factor) * factor
|
48 |
|
49 |
+
def smart_resize(
|
50 |
+
height: int,
|
51 |
+
width: int,
|
52 |
+
factor: int = 28,
|
53 |
+
min_pixels: int = 3136,
|
54 |
+
max_pixels: int = 11289600,
|
55 |
+
):
|
56 |
+
"""Rescales the image so that dimensions are divisible by 'factor', within pixel range, maintaining aspect ratio."""
|
57 |
if max(height, width) / min(height, width) > 200:
|
58 |
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
|
59 |
h_bar = max(factor, round_by_factor(height, factor))
|
60 |
w_bar = max(factor, round_by_factor(width, factor))
|
61 |
+
|
62 |
if h_bar * w_bar > max_pixels:
|
63 |
beta = math.sqrt((height * width) / max_pixels)
|
64 |
h_bar = round_by_factor(height / beta, factor)
|
|
|
70 |
return h_bar, w_bar
|
71 |
|
72 |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
73 |
+
"""Fetch and process an image."""
|
74 |
if isinstance(image_input, str):
|
75 |
if image_input.startswith(("http://", "https://")):
|
76 |
response = requests.get(image_input)
|
|
|
81 |
image = image_input.convert('RGB')
|
82 |
else:
|
83 |
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
84 |
+
|
85 |
+
if min_pixels is not None or max_pixels is not None:
|
86 |
min_pixels = min_pixels or MIN_PIXELS
|
87 |
max_pixels = max_pixels or MAX_PIXELS
|
88 |
+
height, width = smart_resize(
|
89 |
+
image.height,
|
90 |
+
image.width,
|
91 |
+
factor=IMAGE_FACTOR,
|
92 |
+
min_pixels=min_pixels,
|
93 |
+
max_pixels=max_pixels
|
94 |
+
)
|
95 |
image = image.resize((width, height), Image.LANCZOS)
|
96 |
+
|
97 |
return image
|
98 |
|
99 |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
100 |
+
"""Load images from PDF file."""
|
101 |
images = []
|
102 |
try:
|
103 |
pdf_document = fitz.open(pdf_path)
|
104 |
for page_num in range(len(pdf_document)):
|
105 |
page = pdf_document.load_page(page_num)
|
106 |
+
mat = fitz.Matrix(2.0, 2.0) # Increase resolution
|
107 |
pix = page.get_pixmap(matrix=mat)
|
108 |
img_data = pix.tobytes("ppm")
|
109 |
image = Image.open(BytesIO(img_data)).convert('RGB')
|
|
|
115 |
return images
|
116 |
|
117 |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
118 |
+
"""Draw layout bounding boxes on image."""
|
119 |
img_copy = image.copy()
|
120 |
draw = ImageDraw.Draw(img_copy)
|
121 |
+
|
122 |
colors = {
|
123 |
+
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1',
|
124 |
+
'List-item': '#96CEB4', 'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD',
|
125 |
+
'Picture': '#FFD93D', 'Section-header': '#6C5CE7', 'Table': '#FD79A8',
|
126 |
+
'Text': '#74B9FF', 'Title': '#E17055'
|
127 |
}
|
128 |
+
|
129 |
try:
|
130 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) or ImageFont.load_default()
|
|
|
|
|
|
|
131 |
for item in layout_data:
|
132 |
if 'bbox' in item and 'category' in item:
|
133 |
bbox = item['bbox']
|
134 |
category = item['category']
|
135 |
color = colors.get(category, '#000000')
|
136 |
+
|
137 |
draw.rectangle(bbox, outline=color, width=2)
|
138 |
+
|
139 |
label = category
|
140 |
label_bbox = draw.textbbox((0, 0), label, font=font)
|
141 |
+
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1]
|
142 |
+
|
143 |
+
label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 2)
|
|
|
144 |
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
|
145 |
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
|
146 |
except Exception as e:
|
147 |
print(f"Error drawing layout: {e}")
|
148 |
+
|
149 |
return img_copy
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
152 |
+
"""Convert layout JSON to markdown format."""
|
153 |
import base64
|
154 |
+
|
155 |
markdown_lines = []
|
156 |
try:
|
157 |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
|
|
159 |
category = item.get('category', '')
|
160 |
text = item.get(text_key, '')
|
161 |
bbox = item.get('bbox', [])
|
162 |
+
|
163 |
+
if category == 'Picture' and bbox and len(bbox) == 4:
|
164 |
+
try:
|
165 |
+
x1, y1, x2, y2 = [max(0, int(x1)), max(0, int(y1)), min(image.width, int(x2)), min(image.height, int(y2))]
|
166 |
+
if x2 > x1 and y2 > y1:
|
167 |
+
cropped_img = image.crop((x1, y1, x2, y2))
|
168 |
+
buffer = BytesIO()
|
169 |
+
cropped_img.save(buffer, format='PNG')
|
170 |
+
img_data = base64.b64encode(buffer.getvalue()).decode()
|
171 |
+
markdown_lines.append(f"\n")
|
172 |
+
else:
|
173 |
+
markdown_lines.append("\n")
|
174 |
+
except Exception as e:
|
175 |
+
print(f"Error processing image region: {e}")
|
176 |
+
markdown_lines.append("\n")
|
|
|
|
|
177 |
elif not text:
|
178 |
continue
|
179 |
elif category == 'Title':
|
|
|
185 |
elif category == 'List-item':
|
186 |
markdown_lines.append(f"- {text}\n")
|
187 |
elif category == 'Table':
|
188 |
+
markdown_lines.append(f"{text}\n" if text.strip().startswith('<') else f"**Table:** {text}\n")
|
|
|
|
|
|
|
189 |
elif category == 'Formula':
|
190 |
+
markdown_lines.append(f"$$\n{text}\n$$\n" if text.strip().startswith('$') or '\\' in text else f"**Formula:** {text}\n")
|
|
|
|
|
|
|
191 |
elif category == 'Caption':
|
192 |
markdown_lines.append(f"*{text}*\n")
|
193 |
elif category == 'Footnote':
|
|
|
200 |
except Exception as e:
|
201 |
print(f"Error converting to markdown: {e}")
|
202 |
return str(layout_data)
|
203 |
+
|
204 |
return "\n".join(markdown_lines)
|
205 |
|
206 |
+
# Load Models
|
207 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
208 |
+
|
209 |
+
# Load dot.ocr
|
210 |
+
model_id = "rednote-hilab/dots.ocr"
|
211 |
+
model_path = "./models/dots-ocr-local"
|
212 |
+
snapshot_download(repo_id=model_id, local_dir=model_path, local_dir_use_symlinks=False)
|
213 |
+
model = AutoModelForCausalLM.from_pretrained(
|
214 |
+
model_path,
|
215 |
+
attn_implementation="flash_attention_2",
|
216 |
+
torch_dtype=torch.bfloat16,
|
217 |
+
device_map="auto",
|
218 |
+
trust_remote_code=True
|
219 |
+
)
|
220 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
221 |
+
|
222 |
+
# Load Camel-Doc-OCR-062825
|
223 |
+
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
|
224 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
225 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
226 |
+
MODEL_ID_M,
|
227 |
+
trust_remote_code=True,
|
228 |
+
torch_dtype=torch.float16
|
229 |
+
).to(device).eval()
|
230 |
+
|
231 |
+
# Load Megalodon-OCR-Sync-0713
|
232 |
+
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
|
233 |
+
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
234 |
+
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
235 |
+
MODEL_ID_T,
|
236 |
+
trust_remote_code=True,
|
237 |
+
torch_dtype=torch.float16
|
238 |
+
).to(device).eval()
|
239 |
+
|
240 |
+
# Model Dictionary
|
241 |
+
model_dict = {
|
242 |
+
"dot.ocr": {"model": model, "processor": processor, "process_layout": True},
|
243 |
+
"Camel-Doc-OCR-062825": {"model": model_m, "processor": processor_m, "process_layout": False},
|
244 |
+
"Megalodon-OCR-Sync-0713": {"model": model_t, "processor": processor_t, "process_layout": False},
|
245 |
+
}
|
246 |
+
|
247 |
+
# Global State
|
248 |
+
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
|
249 |
+
|
250 |
+
@spaces.GPU()
|
251 |
+
def inference(model, processor, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
|
252 |
+
"""Run inference on an image with the given prompt using the specified model and processor."""
|
253 |
+
try:
|
254 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
255 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
256 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
257 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(device)
|
258 |
+
|
259 |
+
with torch.no_grad():
|
260 |
+
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1)
|
261 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
262 |
+
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
263 |
+
return output_text[0] if output_text else ""
|
264 |
+
except Exception as e:
|
265 |
+
print(f"Error during inference: {e}")
|
266 |
+
traceback.print_exc()
|
267 |
+
return f"Error during inference: {str(e)}"
|
268 |
+
|
269 |
+
def process_image(
|
270 |
+
image: Image.Image,
|
271 |
+
model,
|
272 |
+
processor,
|
273 |
+
process_layout: bool,
|
274 |
+
min_pixels: Optional[int] = None,
|
275 |
+
max_pixels: Optional[int] = None
|
276 |
+
) -> Dict[str, Any]:
|
277 |
+
"""Process a single image with the specified model and processor."""
|
278 |
+
try:
|
279 |
+
if min_pixels is not None or max_pixels is not None:
|
280 |
+
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
281 |
+
|
282 |
+
raw_output = inference(model, processor, image, prompt)
|
283 |
+
result = {'original_image': image, 'raw_output': raw_output, 'processed_image': image, 'layout_result': None, 'markdown_content': raw_output}
|
284 |
+
|
285 |
+
if process_layout:
|
286 |
+
try:
|
287 |
+
layout_data = json.loads(raw_output)
|
288 |
+
result['layout_result'] = layout_data
|
289 |
+
result['processed_image'] = draw_layout_on_image(image, layout_data)
|
290 |
+
result['markdown_content'] = layoutjson2md(image, layout_data, text_key='text')
|
291 |
+
except json.JSONDecodeError:
|
292 |
+
print("Failed to parse JSON output, using raw output")
|
293 |
+
except Exception as e:
|
294 |
+
print(f"Error processing layout: {e}")
|
295 |
+
|
296 |
+
return result
|
297 |
+
except Exception as e:
|
298 |
+
print(f"Error processing image: {e}")
|
299 |
+
traceback.print_exc()
|
300 |
+
return {'original_image': image, 'raw_output': str(e), 'processed_image': image, 'layout_result': None, 'markdown_content': str(e)}
|
301 |
+
|
302 |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
303 |
+
"""Load file for preview (supports PDF and images)."""
|
304 |
global pdf_cache
|
305 |
if not file_path or not os.path.exists(file_path):
|
306 |
return None, "No file selected"
|
307 |
+
|
308 |
file_ext = os.path.splitext(file_path)[1].lower()
|
309 |
try:
|
310 |
if file_ext == '.pdf':
|
311 |
images = load_images_from_pdf(file_path)
|
312 |
if not images:
|
313 |
return None, "Failed to load PDF"
|
314 |
+
pdf_cache.update({"images": images, "current_page": 0, "total_pages": len(images), "file_type": "pdf", "is_parsed": False, "results": []})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
return images[0], f"Page 1 / {len(images)}"
|
316 |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
317 |
image = Image.open(file_path).convert('RGB')
|
318 |
+
pdf_cache.update({"images": [image], "current_page": 0, "total_pages": 1, "file_type": "image", "is_parsed": False, "results": []})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
return image, "Page 1 / 1"
|
320 |
else:
|
321 |
return None, f"Unsupported file format: {file_ext}"
|
|
|
323 |
print(f"Error loading file: {e}")
|
324 |
return None, f"Error loading file: {str(e)}"
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
|
327 |
+
"""Navigate through PDF pages and update outputs."""
|
328 |
global pdf_cache
|
329 |
if not pdf_cache["images"]:
|
330 |
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
|
331 |
+
|
332 |
+
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) if direction == "prev" else min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
|
|
|
|
|
333 |
index = pdf_cache["current_page"]
|
334 |
current_image_preview = pdf_cache["images"][index]
|
335 |
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
|
336 |
+
|
337 |
+
markdown_content, processed_img, layout_json = "Page not processed yet", None, None
|
338 |
+
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]) and pdf_cache["results"][index]:
|
339 |
result = pdf_cache["results"][index]
|
340 |
+
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
|
341 |
+
processed_img = result.get('processed_image')
|
342 |
+
layout_json = result.get('layout_result')
|
343 |
+
|
344 |
+
return current_image_preview, page_info_html, markdown_content, processed_img, layout_json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
def create_gradio_interface():
|
347 |
+
"""Create the Gradio interface."""
|
348 |
css = """
|
349 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
350 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
|
|
362 |
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
|
363 |
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
|
364 |
"""
|
365 |
+
|
366 |
+
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot●OCR Comparator") as demo:
|
367 |
gr.HTML("""
|
368 |
<div class="title" style="text-align: center">
|
369 |
+
<h1>Dot<span style="color: red;">●</span>OCR Comparator</h1>
|
370 |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
371 |
Advanced vision-language model for image/PDF to markdown document processing
|
372 |
</p>
|
373 |
</div>
|
374 |
""")
|
375 |
+
|
376 |
with gr.Row():
|
377 |
with gr.Column(scale=1):
|
378 |
+
model_choice = gr.Radio(
|
379 |
+
choices=["dot.ocr", "Camel-Doc-OCR-062825", "Megalodon-OCR-Sync-0713"],
|
380 |
+
label="Select Model",
|
381 |
+
value="dot.ocr"
|
382 |
)
|
383 |
+
file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], type="filepath")
|
384 |
+
with gr.Row():
|
385 |
+
examples = gr.Examples(
|
386 |
+
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
|
387 |
+
inputs=file_input,
|
388 |
+
label="Example Documents"
|
389 |
+
)
|
390 |
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
|
391 |
with gr.Row():
|
392 |
+
prev_page_btn = gr.Button("◀ Previous", size="md")
|
393 |
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
394 |
+
next_page_btn = gr.Button("Next ▶", size="md")
|
|
|
|
|
|
|
|
|
|
|
395 |
with gr.Accordion("Advanced Settings", open=False):
|
396 |
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
|
397 |
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
|
398 |
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
|
399 |
+
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
|
400 |
+
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
401 |
+
|
402 |
with gr.Column(scale=2):
|
403 |
with gr.Tabs():
|
404 |
+
with gr.Tab("🖼️ Processed Image"):
|
405 |
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
|
406 |
+
with gr.Tab("📝 Extracted Content"):
|
407 |
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
|
408 |
+
with gr.Tab("📋 Layout JSON"):
|
409 |
json_output = gr.JSON(label="Layout Analysis Results", value=None)
|
410 |
+
|
411 |
+
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
|
412 |
+
"""Process the uploaded document with the selected model."""
|
413 |
+
global pdf_cache
|
414 |
+
if not file_path:
|
415 |
+
return None, "Please upload a file first.", None
|
416 |
+
if model_choice not in model_dict:
|
417 |
+
return None, "Invalid model selected", None
|
418 |
+
|
419 |
+
selected_model = model_dict[model_choice]["model"]
|
420 |
+
selected_processor = model_dict[model_choice]["processor"]
|
421 |
+
process_layout = model_dict[model_choice]["process_layout"]
|
422 |
+
|
423 |
+
image, page_info = load_file_for_preview(file_path)
|
424 |
+
if image is None:
|
425 |
+
return None, page_info, None
|
426 |
+
|
427 |
+
if pdf_cache["file_type"] == "pdf":
|
428 |
+
all_results, all_markdown = [], []
|
429 |
+
for i, img in enumerate(pdf_cache["images"]):
|
430 |
+
result = process_image(img, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
|
431 |
+
all_results.append(result)
|
432 |
+
if result.get('markdown_content'):
|
433 |
+
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
|
434 |
+
pdf_cache["results"] = all_results
|
435 |
+
pdf_cache["is_parsed"] = True
|
436 |
+
first_result = all_results[0]
|
437 |
+
return first_result['processed_image'], "\n\n---\n\n".join(all_markdown), first_result['layout_result']
|
438 |
+
else:
|
439 |
+
result = process_image(image, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
|
440 |
+
pdf_cache["results"] = [result]
|
441 |
+
pdf_cache["is_parsed"] = True
|
442 |
+
return result['processed_image'], result['markdown_content'] or "No content extracted", result['layout_result']
|
443 |
+
|
444 |
def handle_file_upload(file_path):
|
445 |
image, page_info = load_file_for_preview(file_path)
|
446 |
return image, page_info
|
447 |
+
|
448 |
def clear_all():
|
449 |
global pdf_cache
|
450 |
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
|
451 |
return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None
|
452 |
+
|
453 |
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
|
454 |
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
|
455 |
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
|
456 |
+
process_btn.click(process_document, inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels], outputs=[processed_image, markdown_output, json_output])
|
457 |
+
clear_btn.click(clear_all, outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output])
|
458 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
return demo
|
460 |
|
461 |
if __name__ == "__main__":
|
462 |
demo = create_gradio_interface()
|
463 |
+
demo.queue(max_size=50).launch(share=False, debug=True, show_error=True)
|