Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,30 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
import os
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
|
|
|
|
7 |
import gradio as gr
|
8 |
-
import
|
9 |
-
import spaces
|
10 |
import torch
|
11 |
-
from PIL import Image, ImageDraw, ImageFont
|
12 |
-
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
|
13 |
from huggingface_hub import snapshot_download
|
14 |
-
from
|
15 |
-
from
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
-
|
21 |
-
# Load dot.ocr model
|
22 |
-
dot_ocr_model_id = "rednote-hilab/dots.ocr"
|
23 |
-
dot_ocr_model = AutoModelForCausalLM.from_pretrained(
|
24 |
-
dot_ocr_model_id,
|
25 |
-
attn_implementation="flash_attention_2",
|
26 |
-
torch_dtype=torch.bfloat16,
|
27 |
-
device_map="auto",
|
28 |
-
trust_remote_code=True
|
29 |
-
)
|
30 |
-
dot_ocr_processor = AutoProcessor.from_pretrained(
|
31 |
-
dot_ocr_model_id,
|
32 |
-
trust_remote_code=True
|
33 |
)
|
34 |
-
|
35 |
-
# Load Dolphin model
|
36 |
-
dolphin_model_id = "ByteDance/Dolphin"
|
37 |
-
dolphin_processor = AutoProcessor.from_pretrained(dolphin_model_id)
|
38 |
-
dolphin_model = VisionEncoderDecoderModel.from_pretrained(dolphin_model_id)
|
39 |
-
dolphin_model.eval()
|
40 |
-
dolphin_model.to(device)
|
41 |
-
dolphin_model = dolphin_model.half()
|
42 |
-
dolphin_tokenizer = dolphin_processor.tokenizer
|
43 |
|
44 |
# Constants
|
45 |
MIN_PIXELS = 3136
|
46 |
MAX_PIXELS = 11289600
|
47 |
IMAGE_FACTOR = 28
|
|
|
48 |
|
49 |
# Prompts
|
50 |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
@@ -66,11 +46,55 @@ prompt = """Please output the layout information from the PDF image, including e
|
|
66 |
5. Final Output: The entire output must be a single JSON object.
|
67 |
"""
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# Utility functions
|
70 |
def round_by_factor(number: int, factor: int) -> int:
|
71 |
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
72 |
return round(number / factor) * factor
|
73 |
|
|
|
74 |
def smart_resize(
|
75 |
height: int,
|
76 |
width: int,
|
@@ -100,6 +124,7 @@ def smart_resize(
|
|
100 |
w_bar = round_by_factor(width * beta, factor)
|
101 |
return h_bar, w_bar
|
102 |
|
|
|
103 |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
104 |
"""Fetch and process an image"""
|
105 |
if isinstance(image_input, str):
|
@@ -112,29 +137,31 @@ def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
|
112 |
image = image_input.convert('RGB')
|
113 |
else:
|
114 |
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
115 |
-
|
116 |
if min_pixels is not None or max_pixels is not None:
|
117 |
min_pixels = min_pixels or MIN_PIXELS
|
118 |
max_pixels = max_pixels or MAX_PIXELS
|
119 |
height, width = smart_resize(
|
120 |
-
image.height,
|
121 |
-
image.width,
|
122 |
factor=IMAGE_FACTOR,
|
123 |
min_pixels=min_pixels,
|
124 |
max_pixels=max_pixels
|
125 |
)
|
126 |
image = image.resize((width, height), Image.LANCZOS)
|
127 |
-
|
128 |
return image
|
129 |
|
|
|
130 |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
131 |
"""Load images from PDF file"""
|
132 |
images = []
|
133 |
try:
|
134 |
-
pdf_document =
|
135 |
for page_num in range(len(pdf_document)):
|
136 |
page = pdf_document.load_page(page_num)
|
137 |
-
|
|
|
138 |
pix = page.get_pixmap(matrix=mat)
|
139 |
img_data = pix.tobytes("ppm")
|
140 |
image = Image.open(BytesIO(img_data)).convert('RGB')
|
@@ -145,14 +172,16 @@ def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
|
145 |
return []
|
146 |
return images
|
147 |
|
|
|
148 |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
149 |
"""Draw layout bounding boxes on image"""
|
150 |
img_copy = image.copy()
|
151 |
draw = ImageDraw.Draw(img_copy)
|
152 |
-
|
|
|
153 |
colors = {
|
154 |
'Caption': '#FF6B6B',
|
155 |
-
'Footnote': '#4ECDC4',
|
156 |
'Formula': '#45B7D1',
|
157 |
'List-item': '#96CEB4',
|
158 |
'Page-footer': '#FFEAA7',
|
@@ -163,58 +192,134 @@ def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.I
|
|
163 |
'Text': '#74B9FF',
|
164 |
'Title': '#E17055'
|
165 |
}
|
166 |
-
|
167 |
try:
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
return img_copy
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
192 |
"""Convert layout JSON to markdown format"""
|
193 |
import base64
|
194 |
from io import BytesIO
|
195 |
-
|
196 |
markdown_lines = []
|
197 |
-
|
198 |
try:
|
199 |
-
|
200 |
-
|
|
|
201 |
for item in sorted_items:
|
202 |
category = item.get('category', '')
|
203 |
text = item.get(text_key, '')
|
204 |
bbox = item.get('bbox', [])
|
205 |
-
|
206 |
if category == 'Picture':
|
|
|
207 |
if bbox and len(bbox) == 4:
|
208 |
try:
|
|
|
209 |
x1, y1, x2, y2 = bbox
|
|
|
210 |
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
211 |
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
|
212 |
-
|
213 |
if x2 > x1 and y2 > y1:
|
214 |
cropped_img = image.crop((x1, y1, x2, y2))
|
|
|
|
|
215 |
buffer = BytesIO()
|
216 |
cropped_img.save(buffer, format='PNG')
|
217 |
img_data = base64.b64encode(buffer.getvalue()).decode()
|
|
|
|
|
218 |
markdown_lines.append(f"\n")
|
219 |
else:
|
220 |
markdown_lines.append("\n")
|
@@ -234,11 +339,13 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
234 |
elif category == 'List-item':
|
235 |
markdown_lines.append(f"- {text}\n")
|
236 |
elif category == 'Table':
|
|
|
237 |
if text.strip().startswith('<'):
|
238 |
markdown_lines.append(f"{text}\n")
|
239 |
else:
|
240 |
markdown_lines.append(f"**Table:** {text}\n")
|
241 |
elif category == 'Formula':
|
|
|
242 |
if text.strip().startswith('$') or '\\' in text:
|
243 |
markdown_lines.append(f"$$\n{text}\n$$\n")
|
244 |
else:
|
@@ -248,16 +355,21 @@ def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = '
|
|
248 |
elif category == 'Footnote':
|
249 |
markdown_lines.append(f"^{text}^\n")
|
250 |
elif category in ['Page-header', 'Page-footer']:
|
|
|
251 |
continue
|
252 |
else:
|
253 |
markdown_lines.append(f"{text}\n")
|
254 |
-
|
|
|
|
|
255 |
except Exception as e:
|
256 |
print(f"Error converting to markdown: {e}")
|
257 |
return str(layout_data)
|
|
|
258 |
return "\n".join(markdown_lines)
|
259 |
|
260 |
-
|
|
|
261 |
pdf_cache = {
|
262 |
"images": [],
|
263 |
"current_page": 0,
|
@@ -266,60 +378,74 @@ pdf_cache = {
|
|
266 |
"is_parsed": False,
|
267 |
"results": []
|
268 |
}
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
"""Run inference on an image with the given prompt using dot.ocr model"""
|
273 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
messages = [
|
275 |
{
|
276 |
"role": "user",
|
277 |
"content": [
|
278 |
-
{"type": "
|
279 |
-
{"type": "
|
280 |
]
|
281 |
}
|
282 |
]
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
)
|
288 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
289 |
-
inputs = dot_ocr_processor(
|
290 |
-
text=[text],
|
291 |
-
images=image_inputs,
|
292 |
-
videos=video_inputs,
|
293 |
-
padding=True,
|
294 |
-
return_tensors="pt",
|
295 |
-
)
|
296 |
-
inputs = inputs.to(device)
|
297 |
with torch.no_grad():
|
298 |
-
generated_ids =
|
299 |
**inputs,
|
300 |
max_new_tokens=max_new_tokens,
|
301 |
do_sample=False,
|
302 |
temperature=0.1
|
303 |
)
|
304 |
-
|
|
|
305 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
306 |
]
|
307 |
-
output_text =
|
308 |
-
|
309 |
-
|
310 |
-
clean_up_tokenization_spaces=False
|
311 |
-
)
|
312 |
-
return output_text[0] if output_text else ""
|
313 |
except Exception as e:
|
314 |
-
print(f"Error during
|
|
|
315 |
return f"Error during inference: {str(e)}"
|
316 |
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
try:
|
|
|
320 |
if min_pixels is not None or max_pixels is not None:
|
321 |
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
322 |
-
|
|
|
|
|
|
|
|
|
323 |
result = {
|
324 |
'original_image': image,
|
325 |
'raw_output': raw_output,
|
@@ -327,19 +453,45 @@ def process_image_dot_ocr(image: Image.Image, min_pixels: Optional[int] = None,
|
|
327 |
'layout_result': None,
|
328 |
'markdown_content': None
|
329 |
}
|
|
|
|
|
330 |
try:
|
331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
result['layout_result'] = layout_data
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
except json.JSONDecodeError:
|
338 |
print("Failed to parse JSON output, using raw output")
|
339 |
result['markdown_content'] = raw_output
|
|
|
340 |
return result
|
|
|
341 |
except Exception as e:
|
342 |
-
print(f"Error processing image
|
|
|
343 |
return {
|
344 |
'original_image': image,
|
345 |
'raw_output': f"Error processing image: {str(e)}",
|
@@ -348,279 +500,23 @@ def process_image_dot_ocr(image: Image.Image, min_pixels: Optional[int] = None,
|
|
348 |
'markdown_content': f"Error processing image: {str(e)}"
|
349 |
}
|
350 |
|
351 |
-
def process_all_pages_dot_ocr(file_path, min_pixels, max_pixels):
|
352 |
-
"""Process all pages of a document with dot.ocr model"""
|
353 |
-
if file_path.lower().endswith('.pdf'):
|
354 |
-
images = load_images_from_pdf(file_path)
|
355 |
-
else:
|
356 |
-
images = [Image.open(file_path).convert('RGB')]
|
357 |
-
results = []
|
358 |
-
for img in images:
|
359 |
-
result = process_image_dot_ocr(img, min_pixels, max_pixels)
|
360 |
-
results.append(result)
|
361 |
-
return results
|
362 |
-
|
363 |
-
# Dolphin model functions
|
364 |
-
@spaces.GPU()
|
365 |
-
def dolphin_model_chat(prompt, image):
|
366 |
-
"""Process an image or batch of images with the given prompt(s) using Dolphin model"""
|
367 |
-
is_batch = isinstance(image, list)
|
368 |
-
if not is_batch:
|
369 |
-
images = [image]
|
370 |
-
prompts = [prompt]
|
371 |
-
else:
|
372 |
-
images = image
|
373 |
-
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
|
374 |
-
batch_inputs = dolphin_processor(images, return_tensors="pt", padding=True)
|
375 |
-
batch_pixel_values = batch_inputs.pixel_values.half().to(device)
|
376 |
-
prompts = [f"<s>{p} <Answer/>" for p in prompts]
|
377 |
-
batch_prompt_inputs = dolphin_tokenizer(
|
378 |
-
prompts,
|
379 |
-
add_special_tokens=False,
|
380 |
-
return_tensors="pt"
|
381 |
-
)
|
382 |
-
batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
|
383 |
-
batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
|
384 |
-
outputs = dolphin_model.generate(
|
385 |
-
pixel_values=batch_pixel_values,
|
386 |
-
decoder_input_ids=batch_prompt_ids,
|
387 |
-
decoder_attention_mask=batch_attention_mask,
|
388 |
-
min_length=1,
|
389 |
-
max_length=4096,
|
390 |
-
pad_token_id=dolphin_tokenizer.pad_token_id,
|
391 |
-
eos_token_id=dolphin_tokenizer.eos_token_id,
|
392 |
-
use_cache=True,
|
393 |
-
bad_words_ids=[[dolphin_tokenizer.unk_token_id]],
|
394 |
-
return_dict_in_generate=True,
|
395 |
-
do_sample=False,
|
396 |
-
num_beams=1,
|
397 |
-
repetition_penalty=1.1
|
398 |
-
)
|
399 |
-
sequences = dolphin_tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
|
400 |
-
results = []
|
401 |
-
for i, sequence in enumerate(sequences):
|
402 |
-
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
|
403 |
-
results.append(cleaned)
|
404 |
-
if not is_batch:
|
405 |
-
return results[0]
|
406 |
-
return results
|
407 |
-
|
408 |
-
def process_element_batch_dolphin(elements, prompt, max_batch_size=16):
|
409 |
-
"""Process elements of the same type in batches for Dolphin model"""
|
410 |
-
results = []
|
411 |
-
batch_size = min(len(elements), max_batch_size)
|
412 |
-
for i in range(0, len(elements), batch_size):
|
413 |
-
batch_elements = elements[i:i+batch_size]
|
414 |
-
crops_list = [elem["crop"] for elem in batch_elements]
|
415 |
-
prompts_list = [prompt] * len(crops_list)
|
416 |
-
batch_results = dolphin_model_chat(prompts_list, crops_list)
|
417 |
-
for j, result in enumerate(batch_results):
|
418 |
-
elem = batch_elements[j]
|
419 |
-
results.append({
|
420 |
-
"label": elem["label"],
|
421 |
-
"bbox": elem["bbox"],
|
422 |
-
"text": result.strip(),
|
423 |
-
"reading_order": elem["reading_order"],
|
424 |
-
})
|
425 |
-
return results
|
426 |
-
|
427 |
-
def process_page_dolphin(image_path):
|
428 |
-
"""Process a single page with Dolphin model"""
|
429 |
-
pil_image = Image.open(image_path).convert("RGB")
|
430 |
-
layout_output = dolphin_model_chat("Parse the reading order of this document.", pil_image)
|
431 |
-
padded_image, dims = prepare_image(pil_image)
|
432 |
-
recognition_results = process_elements_dolphin(layout_output, padded_image, dims)
|
433 |
-
return recognition_results
|
434 |
-
|
435 |
-
def process_elements_dolphin(layout_results, padded_image, dims):
|
436 |
-
"""Parse all document elements for Dolphin model"""
|
437 |
-
layout_results = parse_layout_string(layout_results)
|
438 |
-
text_elements = []
|
439 |
-
table_elements = []
|
440 |
-
figure_results = []
|
441 |
-
previous_box = None
|
442 |
-
reading_order = 0
|
443 |
-
for bbox, label in layout_results:
|
444 |
-
try:
|
445 |
-
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
|
446 |
-
bbox, padded_image, dims, previous_box
|
447 |
-
)
|
448 |
-
cropped = padded_image[y1:y2, x1:x2]
|
449 |
-
if cropped.size > 0 and (cropped.shape[0] > 3 and cropped.shape[1] > 3):
|
450 |
-
if label == "fig":
|
451 |
-
try:
|
452 |
-
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
453 |
-
buffered = io.BytesIO()
|
454 |
-
pil_crop.save(buffered, format="PNG")
|
455 |
-
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
456 |
-
figure_results.append(
|
457 |
-
{
|
458 |
-
"label": label,
|
459 |
-
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
460 |
-
"text": img_base64,
|
461 |
-
"reading_order": reading_order,
|
462 |
-
}
|
463 |
-
)
|
464 |
-
except Exception as e:
|
465 |
-
print(f"Error encoding figure to base64: {e}")
|
466 |
-
figure_results.append(
|
467 |
-
{
|
468 |
-
"label": label,
|
469 |
-
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
470 |
-
"text": "",
|
471 |
-
"reading_order": reading_order,
|
472 |
-
}
|
473 |
-
)
|
474 |
-
else:
|
475 |
-
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
|
476 |
-
element_info = {
|
477 |
-
"crop": pil_crop,
|
478 |
-
"label": label,
|
479 |
-
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
|
480 |
-
"reading_order": reading_order,
|
481 |
-
}
|
482 |
-
if label == "tab":
|
483 |
-
table_elements.append(element_info)
|
484 |
-
else:
|
485 |
-
text_elements.append(element_info)
|
486 |
-
reading_order += 1
|
487 |
-
except Exception as e:
|
488 |
-
print(f"Error processing bbox with label {label}: {str(e)}")
|
489 |
-
continue
|
490 |
-
recognition_results = figure_results.copy()
|
491 |
-
if text_elements:
|
492 |
-
text_results = process_element_batch_dolphin(text_elements, "Read text in the image.")
|
493 |
-
recognition_results.extend(text_results)
|
494 |
-
if table_elements:
|
495 |
-
table_results = process_element_batch_dolphin(table_elements, "Parse the table in the image.")
|
496 |
-
recognition_results.extend(table_results)
|
497 |
-
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
|
498 |
-
return recognition_results
|
499 |
-
|
500 |
-
def generate_markdown(recognition_results):
|
501 |
-
"""Generate markdown from recognition results for Dolphin model"""
|
502 |
-
converter = MarkdownConverter()
|
503 |
-
return converter.convert(recognition_results)
|
504 |
-
|
505 |
-
def convert_all_pdf_pages_to_images(file_path, target_size=896):
|
506 |
-
"""Convert all pages of a PDF to images for Dolphin model"""
|
507 |
-
if file_path is None:
|
508 |
-
return []
|
509 |
-
try:
|
510 |
-
file_ext = os.path.splitext(file_path)[1].lower()
|
511 |
-
if file_ext == '.pdf':
|
512 |
-
doc = pymupdf.open(file_path)
|
513 |
-
image_paths = []
|
514 |
-
for page_num in range(len(doc)):
|
515 |
-
page = doc[page_num]
|
516 |
-
rect = page.rect
|
517 |
-
scale = target_size / max(rect.width, rect.height)
|
518 |
-
mat = pymupdf.Matrix(scale, scale)
|
519 |
-
pix = page.get_pixmap(matrix=mat)
|
520 |
-
img_data = pix.tobytes("png")
|
521 |
-
pil_image = Image.open(io.BytesIO(img_data))
|
522 |
-
with tempfile.NamedTemporaryFile(suffix=f"_page_{page_num}.png", delete=False) as tmp_file:
|
523 |
-
pil_image.save(tmp_file.name, "PNG")
|
524 |
-
image_paths.append(tmp_file.name)
|
525 |
-
doc.close()
|
526 |
-
return image_paths
|
527 |
-
else:
|
528 |
-
converted_path = convert_to_image(file_path, target_size)
|
529 |
-
return [converted_path] if converted_path else []
|
530 |
-
except Exception as e:
|
531 |
-
print(f"Error converting PDF pages to images: {e}")
|
532 |
-
return []
|
533 |
-
|
534 |
-
def convert_to_image(file_path, target_size=896, page_num=0):
|
535 |
-
"""Convert input file to image format for Dolphin model"""
|
536 |
-
if file_path is None:
|
537 |
-
return None
|
538 |
-
try:
|
539 |
-
file_ext = os.path.splitext(file_path)[1].lower()
|
540 |
-
if file_ext == '.pdf':
|
541 |
-
doc = pymupdf.open(file_path)
|
542 |
-
if page_num >= len(doc):
|
543 |
-
page_num = 0
|
544 |
-
page = doc[page_num]
|
545 |
-
rect = page.rect
|
546 |
-
scale = target_size / max(rect.width, rect.height)
|
547 |
-
mat = pymupdf.Matrix(scale, scale)
|
548 |
-
pix = page.get_pixmap(matrix=mat)
|
549 |
-
img_data = pix.tobytes("png")
|
550 |
-
pil_image = Image.open(io.BytesIO(img_data))
|
551 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
|
552 |
-
pil_image.save(tmp_file.name, "PNG")
|
553 |
-
doc.close()
|
554 |
-
return tmp_file.name
|
555 |
-
else:
|
556 |
-
pil_image = Image.open(file_path).convert("RGB")
|
557 |
-
w, h = pil_image.size
|
558 |
-
if max(w, h) > target_size:
|
559 |
-
if w > h:
|
560 |
-
new_w, new_h = target_size, int(h * target_size / w)
|
561 |
-
else:
|
562 |
-
new_w, new_h = int(w * target_size / h), target_size
|
563 |
-
pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
564 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
|
565 |
-
pil_image.save(tmp_file.name, "PNG")
|
566 |
-
return tmp_file.name
|
567 |
-
except Exception as e:
|
568 |
-
print(f"Error converting file to image: {e}")
|
569 |
-
return file_path
|
570 |
-
|
571 |
-
def process_all_pages_dolphin(file_path):
|
572 |
-
"""Process all pages of a document with Dolphin model"""
|
573 |
-
image_paths = convert_all_pdf_pages_to_images(file_path)
|
574 |
-
per_page_results = []
|
575 |
-
for image_path in image_paths:
|
576 |
-
try:
|
577 |
-
original_image = Image.open(image_path).convert('RGB')
|
578 |
-
recognition_results = process_page_dolphin(image_path)
|
579 |
-
markdown_content = generate_markdown(recognition_results)
|
580 |
-
placeholder_text = "Layout visualization not available for Dolphin model"
|
581 |
-
processed_image = create_placeholder_image(placeholder_text, size=(original_image.width, original_image.height))
|
582 |
-
per_page_results.append({
|
583 |
-
'original_image': original_image,
|
584 |
-
'processed_image': processed_image,
|
585 |
-
'markdown_content': markdown_content,
|
586 |
-
'layout_result': recognition_results
|
587 |
-
})
|
588 |
-
except Exception as e:
|
589 |
-
print(f"Error processing page: {e}")
|
590 |
-
per_page_results.append({
|
591 |
-
'original_image': Image.new('RGB', (100, 100), color='white'),
|
592 |
-
'processed_image': create_placeholder_image("Error processing page", size=(100, 100)),
|
593 |
-
'markdown_content': f"Error processing page: {str(e)}",
|
594 |
-
'layout_result': None
|
595 |
-
})
|
596 |
-
finally:
|
597 |
-
if os.path.exists(image_path):
|
598 |
-
os.remove(image_path)
|
599 |
-
return per_page_results
|
600 |
-
|
601 |
-
def create_placeholder_image(text, size=(400, 200)):
|
602 |
-
"""Create a placeholder image with text"""
|
603 |
-
img = Image.new('RGB', size, color='white')
|
604 |
-
draw = ImageDraw.Draw(img)
|
605 |
-
try:
|
606 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
|
607 |
-
except Exception:
|
608 |
-
font = ImageFont.load_default()
|
609 |
-
draw.text((10, 10), text, fill='black', font=font)
|
610 |
-
return img
|
611 |
|
612 |
-
# Gradio interface functions
|
613 |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
614 |
"""Load file for preview (supports PDF and images)"""
|
615 |
global pdf_cache
|
|
|
616 |
if not file_path or not os.path.exists(file_path):
|
617 |
return None, "No file selected"
|
618 |
-
|
|
|
|
|
619 |
try:
|
620 |
if file_ext == '.pdf':
|
|
|
621 |
images = load_images_from_pdf(file_path)
|
622 |
if not images:
|
623 |
return None, "Failed to load PDF"
|
|
|
624 |
pdf_cache.update({
|
625 |
"images": images,
|
626 |
"current_page": 0,
|
@@ -629,9 +525,13 @@ def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
|
629 |
"is_parsed": False,
|
630 |
"results": []
|
631 |
})
|
632 |
-
|
|
|
|
|
633 |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
|
|
634 |
image = Image.open(file_path).convert('RGB')
|
|
|
635 |
pdf_cache.update({
|
636 |
"images": [image],
|
637 |
"current_page": 0,
|
@@ -640,78 +540,73 @@ def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
|
640 |
"is_parsed": False,
|
641 |
"results": []
|
642 |
})
|
|
|
643 |
return image, "Page 1 / 1"
|
644 |
else:
|
645 |
return None, f"Unsupported file format: {file_ext}"
|
|
|
646 |
except Exception as e:
|
647 |
print(f"Error loading file: {e}")
|
648 |
return None, f"Error loading file: {str(e)}"
|
649 |
|
650 |
-
|
|
|
651 |
"""Navigate through PDF pages and update all relevant outputs."""
|
652 |
global pdf_cache
|
|
|
653 |
if not pdf_cache["images"]:
|
654 |
-
return None, "No file loaded
|
|
|
655 |
if direction == "prev":
|
656 |
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
|
657 |
elif direction == "next":
|
658 |
-
pdf_cache["current_page"] = min(
|
|
|
|
|
|
|
|
|
659 |
index = pdf_cache["current_page"]
|
660 |
current_image_preview = pdf_cache["images"][index]
|
661 |
-
page_info_html = f"Page {index + 1} / {pdf_cache[
|
662 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
result = pdf_cache["results"][index]
|
664 |
-
|
665 |
-
|
666 |
-
layout_json = result
|
|
|
|
|
|
|
|
|
667 |
else:
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
return current_image_preview, page_info_html, markdown_content, processed_img, layout_json
|
672 |
|
673 |
-
def process_document(model_choice, file_path, max_tokens, min_pix, max_pix):
|
674 |
-
"""Process the uploaded document with the selected model"""
|
675 |
-
global pdf_cache
|
676 |
-
try:
|
677 |
-
if not file_path:
|
678 |
-
return None, "Please upload a file first.", None
|
679 |
-
if model_choice == "dot.ocr":
|
680 |
-
results = process_all_pages_dot_ocr(file_path, min_pix, max_pix)
|
681 |
-
elif model_choice == "Dolphin":
|
682 |
-
results = process_all_pages_dolphin(file_path)
|
683 |
-
else:
|
684 |
-
raise ValueError("Invalid model choice")
|
685 |
-
pdf_cache["results"] = results
|
686 |
-
pdf_cache["is_parsed"] = True
|
687 |
-
first_result = results[0]
|
688 |
-
if model_choice == "dot.ocr":
|
689 |
-
processed_img = first_result['processed_image']
|
690 |
-
markdown_content = first_result['markdown_content']
|
691 |
-
layout_json = first_result['layout_result']
|
692 |
-
else:
|
693 |
-
processed_img = first_result['processed_image']
|
694 |
-
markdown_content = first_result['markdown_content']
|
695 |
-
layout_json = first_result['layout_result']
|
696 |
-
return processed_img, markdown_content, layout_json
|
697 |
-
except Exception as e:
|
698 |
-
error_msg = f"Error processing document: {str(e)}"
|
699 |
-
print(error_msg)
|
700 |
-
return None, error_msg, None
|
701 |
|
702 |
def create_gradio_interface():
|
703 |
"""Create the Gradio interface"""
|
|
|
704 |
css = """
|
705 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
706 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
707 |
-
.process-button {
|
708 |
-
border: none !important;
|
709 |
-
color: white !important;
|
710 |
-
font-weight: bold !important;
|
711 |
-
background-color: blue !important;}
|
712 |
-
.process-button:hover {
|
713 |
background-color: darkblue !important;
|
714 |
-
transform: translateY(-2px) !important;
|
715 |
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
716 |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
|
717 |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
|
@@ -727,34 +622,41 @@ def create_gradio_interface():
|
|
727 |
</p>
|
728 |
</div>
|
729 |
""")
|
|
|
|
|
730 |
with gr.Row():
|
|
|
731 |
with gr.Column(scale=1):
|
|
|
|
|
732 |
model_choice = gr.Radio(
|
733 |
-
choices=["
|
734 |
label="Select Model",
|
735 |
-
value="
|
736 |
)
|
|
|
|
|
737 |
file_input = gr.File(
|
738 |
label="Upload Image or PDF",
|
739 |
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
|
740 |
type="filepath"
|
741 |
)
|
742 |
-
|
743 |
-
|
744 |
-
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
|
745 |
-
inputs=file_input,
|
746 |
-
label="Example Documents"
|
747 |
-
)
|
748 |
image_preview = gr.Image(
|
749 |
label="Preview",
|
750 |
type="pil",
|
751 |
interactive=False,
|
752 |
height=300
|
753 |
)
|
|
|
|
|
754 |
with gr.Row():
|
755 |
prev_page_btn = gr.Button("◀ Previous", size="md")
|
756 |
-
page_info = gr.HTML("No file loaded
|
757 |
next_page_btn = gr.Button("Next ▶", size="md")
|
|
|
|
|
758 |
with gr.Accordion("Advanced Settings", open=False):
|
759 |
max_new_tokens = gr.Slider(
|
760 |
minimum=1000,
|
@@ -764,25 +666,36 @@ def create_gradio_interface():
|
|
764 |
label="Max New Tokens",
|
765 |
info="Maximum number of tokens to generate"
|
766 |
)
|
|
|
767 |
min_pixels = gr.Number(
|
768 |
value=MIN_PIXELS,
|
769 |
label="Min Pixels",
|
770 |
info="Minimum image resolution"
|
771 |
)
|
|
|
772 |
max_pixels = gr.Number(
|
773 |
value=MAX_PIXELS,
|
774 |
-
label="Max Pixels",
|
775 |
info="Maximum image resolution"
|
776 |
)
|
|
|
|
|
777 |
process_btn = gr.Button(
|
778 |
"🚀 Process Document",
|
779 |
variant="primary",
|
780 |
elem_classes=["process-button"],
|
781 |
size="lg"
|
782 |
)
|
|
|
|
|
783 |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
|
|
|
|
784 |
with gr.Column(scale=2):
|
|
|
|
|
785 |
with gr.Tabs():
|
|
|
786 |
with gr.Tab("🖼️ Processed Image"):
|
787 |
processed_image = gr.Image(
|
788 |
label="Image with Layout Detection",
|
@@ -790,11 +703,13 @@ def create_gradio_interface():
|
|
790 |
interactive=False,
|
791 |
height=500
|
792 |
)
|
|
|
793 |
with gr.Tab("📝 Extracted Content"):
|
794 |
markdown_output = gr.Markdown(
|
795 |
value="Click 'Process Document' to see extracted content...",
|
796 |
height=500
|
797 |
)
|
|
|
798 |
with gr.Tab("📋 Layout JSON"):
|
799 |
json_output = gr.JSON(
|
800 |
label="Layout Analysis Results",
|
@@ -802,8 +717,114 @@ def create_gradio_interface():
|
|
802 |
)
|
803 |
|
804 |
# Event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
805 |
file_input.change(
|
806 |
-
|
807 |
inputs=[file_input],
|
808 |
outputs=[image_preview, page_info]
|
809 |
)
|
@@ -825,12 +846,23 @@ def create_gradio_interface():
|
|
825 |
)
|
826 |
|
827 |
clear_btn.click(
|
828 |
-
|
829 |
-
outputs=[
|
|
|
|
|
|
|
830 |
)
|
831 |
|
832 |
return demo
|
833 |
|
|
|
834 |
if __name__ == "__main__":
|
|
|
835 |
demo = create_gradio_interface()
|
836 |
-
demo.queue(max_size=10).launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import json
|
3 |
+
import math
|
4 |
import os
|
5 |
+
import traceback
|
6 |
+
from io import BytesIO
|
7 |
+
from typing import Any, Dict, List, Optional, Tuple
|
8 |
+
import re
|
9 |
+
|
10 |
+
import fitz
|
11 |
import gradio as gr
|
12 |
+
import requests
|
|
|
13 |
import torch
|
|
|
|
|
14 |
from huggingface_hub import snapshot_download
|
15 |
+
from PIL import Image, ImageDraw, ImageFont
|
16 |
+
from transformers import (
|
17 |
+
Qwen2_5_VLForConditionalGeneration,
|
18 |
+
AutoProcessor,
|
19 |
+
TextIteratorStreamer,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
+
from qwen_vl_utils import process_vision_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Constants
|
24 |
MIN_PIXELS = 3136
|
25 |
MAX_PIXELS = 11289600
|
26 |
IMAGE_FACTOR = 28
|
27 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
|
29 |
# Prompts
|
30 |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
|
|
46 |
5. Final Output: The entire output must be a single JSON object.
|
47 |
"""
|
48 |
|
49 |
+
# Load Camel-Doc-OCR-062825
|
50 |
+
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
|
51 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
52 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
53 |
+
MODEL_ID_M,
|
54 |
+
trust_remote_code=True,
|
55 |
+
torch_dtype=torch.float16
|
56 |
+
).to(device).eval()
|
57 |
+
|
58 |
+
# Load Megalodon-OCR-Sync-0713
|
59 |
+
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
|
60 |
+
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
|
61 |
+
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
62 |
+
MODEL_ID_T,
|
63 |
+
trust_remote_code=True,
|
64 |
+
torch_dtype=torch.float16
|
65 |
+
).to(device).eval()
|
66 |
+
|
67 |
+
# Load Nanonets-OCR-s
|
68 |
+
MODEL_ID_C = "nanonets/Nanonets-OCR-s"
|
69 |
+
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
|
70 |
+
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
71 |
+
MODEL_ID_C,
|
72 |
+
trust_remote_code=True,
|
73 |
+
torch_dtype=torch.float16
|
74 |
+
).to(device).eval()
|
75 |
+
|
76 |
+
# Load MonkeyOCR
|
77 |
+
MODEL_ID_G = "echo840/MonkeyOCR"
|
78 |
+
SUBFOLDER = "Recognition"
|
79 |
+
processor_g = AutoProcessor.from_pretrained(
|
80 |
+
MODEL_ID_G,
|
81 |
+
trust_remote_code=True,
|
82 |
+
subfolder=SUBFOLDER
|
83 |
+
)
|
84 |
+
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
85 |
+
MODEL_ID_G,
|
86 |
+
trust_remote_code=True,
|
87 |
+
subfolder=SUBFOLDER,
|
88 |
+
torch_dtype=torch.float16
|
89 |
+
).to(device).eval()
|
90 |
+
|
91 |
+
|
92 |
# Utility functions
|
93 |
def round_by_factor(number: int, factor: int) -> int:
|
94 |
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
95 |
return round(number / factor) * factor
|
96 |
|
97 |
+
|
98 |
def smart_resize(
|
99 |
height: int,
|
100 |
width: int,
|
|
|
124 |
w_bar = round_by_factor(width * beta, factor)
|
125 |
return h_bar, w_bar
|
126 |
|
127 |
+
|
128 |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
|
129 |
"""Fetch and process an image"""
|
130 |
if isinstance(image_input, str):
|
|
|
137 |
image = image_input.convert('RGB')
|
138 |
else:
|
139 |
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
140 |
+
|
141 |
if min_pixels is not None or max_pixels is not None:
|
142 |
min_pixels = min_pixels or MIN_PIXELS
|
143 |
max_pixels = max_pixels or MAX_PIXELS
|
144 |
height, width = smart_resize(
|
145 |
+
image.height,
|
146 |
+
image.width,
|
147 |
factor=IMAGE_FACTOR,
|
148 |
min_pixels=min_pixels,
|
149 |
max_pixels=max_pixels
|
150 |
)
|
151 |
image = image.resize((width, height), Image.LANCZOS)
|
152 |
+
|
153 |
return image
|
154 |
|
155 |
+
|
156 |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
157 |
"""Load images from PDF file"""
|
158 |
images = []
|
159 |
try:
|
160 |
+
pdf_document = fitz.open(pdf_path)
|
161 |
for page_num in range(len(pdf_document)):
|
162 |
page = pdf_document.load_page(page_num)
|
163 |
+
# Convert page to image
|
164 |
+
mat = fitz.Matrix(2.0, 2.0) # Increase resolution
|
165 |
pix = page.get_pixmap(matrix=mat)
|
166 |
img_data = pix.tobytes("ppm")
|
167 |
image = Image.open(BytesIO(img_data)).convert('RGB')
|
|
|
172 |
return []
|
173 |
return images
|
174 |
|
175 |
+
|
176 |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
|
177 |
"""Draw layout bounding boxes on image"""
|
178 |
img_copy = image.copy()
|
179 |
draw = ImageDraw.Draw(img_copy)
|
180 |
+
|
181 |
+
# Colors for different categories
|
182 |
colors = {
|
183 |
'Caption': '#FF6B6B',
|
184 |
+
'Footnote': '#4ECDC4',
|
185 |
'Formula': '#45B7D1',
|
186 |
'List-item': '#96CEB4',
|
187 |
'Page-footer': '#FFEAA7',
|
|
|
192 |
'Text': '#74B9FF',
|
193 |
'Title': '#E17055'
|
194 |
}
|
195 |
+
|
196 |
try:
|
197 |
+
# Load a font
|
198 |
+
try:
|
199 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
|
200 |
+
except Exception:
|
201 |
+
font = ImageFont.load_default()
|
202 |
+
|
203 |
+
for item in layout_data:
|
204 |
+
if 'bbox' in item and 'category' in item:
|
205 |
+
bbox = item['bbox']
|
206 |
+
category = item['category']
|
207 |
+
color = colors.get(category, '#000000')
|
208 |
+
|
209 |
+
# Draw rectangle
|
210 |
+
draw.rectangle(bbox, outline=color, width=2)
|
211 |
+
|
212 |
+
# Draw label
|
213 |
+
label = category
|
214 |
+
label_bbox = draw.textbbox((0, 0), label, font=font)
|
215 |
+
label_width = label_bbox[2] - label_bbox[0]
|
216 |
+
label_height = label_bbox[3] - label_bbox[1]
|
217 |
+
|
218 |
+
# Position label above the box
|
219 |
+
label_x = bbox[0]
|
220 |
+
label_y = max(0, bbox[1] - label_height - 2)
|
221 |
+
|
222 |
+
# Draw background for label
|
223 |
+
draw.rectangle(
|
224 |
+
[label_x, label_y, label_x + label_width + 4, label_y + label_height + 2],
|
225 |
+
fill=color
|
226 |
+
)
|
227 |
+
|
228 |
+
# Draw text
|
229 |
+
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
|
230 |
+
|
231 |
+
except Exception as e:
|
232 |
+
print(f"Error drawing layout: {e}")
|
233 |
+
|
234 |
return img_copy
|
235 |
|
236 |
+
|
237 |
+
def is_arabic_text(text: str) -> bool:
|
238 |
+
"""Check if text in headers and paragraphs contains mostly Arabic characters"""
|
239 |
+
if not text:
|
240 |
+
return False
|
241 |
+
|
242 |
+
# Extract text from headers and paragraphs only
|
243 |
+
# Match markdown headers (# ## ###) and regular paragraph text
|
244 |
+
header_pattern = r'^#{1,6}\s+(.+)$'
|
245 |
+
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
|
246 |
+
|
247 |
+
content_text = []
|
248 |
+
|
249 |
+
for line in text.split('\n'):
|
250 |
+
line = line.strip()
|
251 |
+
if not line:
|
252 |
+
continue
|
253 |
+
|
254 |
+
# Check for headers
|
255 |
+
header_match = re.match(header_pattern, line, re.MULTILINE)
|
256 |
+
if header_match:
|
257 |
+
content_text.append(header_match.group(1))
|
258 |
+
continue
|
259 |
+
|
260 |
+
# Check for paragraph text (exclude lists, tables, code blocks, images)
|
261 |
+
if re.match(paragraph_pattern, line, re.MULTILINE):
|
262 |
+
content_text.append(line)
|
263 |
+
|
264 |
+
if not content_text:
|
265 |
+
return False
|
266 |
+
|
267 |
+
# Join all content text and check for Arabic characters
|
268 |
+
combined_text = ' '.join(content_text)
|
269 |
+
|
270 |
+
# Arabic Unicode ranges
|
271 |
+
arabic_chars = 0
|
272 |
+
total_chars = 0
|
273 |
+
|
274 |
+
for char in combined_text:
|
275 |
+
if char.isalpha():
|
276 |
+
total_chars += 1
|
277 |
+
# Arabic script ranges
|
278 |
+
if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
|
279 |
+
arabic_chars += 1
|
280 |
+
|
281 |
+
if total_chars == 0:
|
282 |
+
return False
|
283 |
+
|
284 |
+
# Consider text as Arabic if more than 50% of alphabetic characters are Arabic
|
285 |
+
return (arabic_chars / total_chars) > 0.5
|
286 |
+
|
287 |
+
|
288 |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
|
289 |
"""Convert layout JSON to markdown format"""
|
290 |
import base64
|
291 |
from io import BytesIO
|
292 |
+
|
293 |
markdown_lines = []
|
294 |
+
|
295 |
try:
|
296 |
+
# Sort items by reading order (top to bottom, left to right)
|
297 |
+
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox',), x.get('bbox',)))
|
298 |
+
|
299 |
for item in sorted_items:
|
300 |
category = item.get('category', '')
|
301 |
text = item.get(text_key, '')
|
302 |
bbox = item.get('bbox', [])
|
303 |
+
|
304 |
if category == 'Picture':
|
305 |
+
# Extract image region and embed it
|
306 |
if bbox and len(bbox) == 4:
|
307 |
try:
|
308 |
+
# Extract the image region
|
309 |
x1, y1, x2, y2 = bbox
|
310 |
+
# Ensure coordinates are within image bounds
|
311 |
x1, y1 = max(0, int(x1)), max(0, int(y1))
|
312 |
x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
|
313 |
+
|
314 |
if x2 > x1 and y2 > y1:
|
315 |
cropped_img = image.crop((x1, y1, x2, y2))
|
316 |
+
|
317 |
+
# Convert to base64 for embedding
|
318 |
buffer = BytesIO()
|
319 |
cropped_img.save(buffer, format='PNG')
|
320 |
img_data = base64.b64encode(buffer.getvalue()).decode()
|
321 |
+
|
322 |
+
# Add as markdown image
|
323 |
markdown_lines.append(f"\n")
|
324 |
else:
|
325 |
markdown_lines.append("\n")
|
|
|
339 |
elif category == 'List-item':
|
340 |
markdown_lines.append(f"- {text}\n")
|
341 |
elif category == 'Table':
|
342 |
+
# If text is already HTML, keep it as is
|
343 |
if text.strip().startswith('<'):
|
344 |
markdown_lines.append(f"{text}\n")
|
345 |
else:
|
346 |
markdown_lines.append(f"**Table:** {text}\n")
|
347 |
elif category == 'Formula':
|
348 |
+
# If text is LaTeX, format it properly
|
349 |
if text.strip().startswith('$') or '\\' in text:
|
350 |
markdown_lines.append(f"$$\n{text}\n$$\n")
|
351 |
else:
|
|
|
355 |
elif category == 'Footnote':
|
356 |
markdown_lines.append(f"^{text}^\n")
|
357 |
elif category in ['Page-header', 'Page-footer']:
|
358 |
+
# Skip headers and footers in main content
|
359 |
continue
|
360 |
else:
|
361 |
markdown_lines.append(f"{text}\n")
|
362 |
+
|
363 |
+
markdown_lines.append("") # Add spacing
|
364 |
+
|
365 |
except Exception as e:
|
366 |
print(f"Error converting to markdown: {e}")
|
367 |
return str(layout_data)
|
368 |
+
|
369 |
return "\n".join(markdown_lines)
|
370 |
|
371 |
+
|
372 |
+
# PDF handling state
|
373 |
pdf_cache = {
|
374 |
"images": [],
|
375 |
"current_page": 0,
|
|
|
378 |
"is_parsed": False,
|
379 |
"results": []
|
380 |
}
|
381 |
+
@spaces.GPU
|
382 |
+
def inference(model_name: str, image: Image.Image, prompt: str, max_new_tokens: int = 1024) -> str:
|
383 |
+
"""Run inference on an image with the given prompt using the selected model."""
|
|
|
384 |
try:
|
385 |
+
if model_name == "Camel-Doc-OCR-062825":
|
386 |
+
processor = processor_m
|
387 |
+
model = model_m
|
388 |
+
elif model_name == "Megalodon-OCR-Sync-0713":
|
389 |
+
processor = processor_t
|
390 |
+
model = model_t
|
391 |
+
elif model_name == "Nanonets-OCR-s":
|
392 |
+
processor = processor_c
|
393 |
+
model = model_c
|
394 |
+
elif model_name == "MonkeyOCR-Recognition":
|
395 |
+
processor = processor_g
|
396 |
+
model = model_g
|
397 |
+
else:
|
398 |
+
raise ValueError(f"Invalid model selected: {model_name}")
|
399 |
+
|
400 |
messages = [
|
401 |
{
|
402 |
"role": "user",
|
403 |
"content": [
|
404 |
+
{"type": "text", "text": prompt},
|
405 |
+
{"type": "image"}
|
406 |
]
|
407 |
}
|
408 |
]
|
409 |
+
|
410 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
411 |
+
inputs = processor(text, [image], return_tensors="pt").to(device)
|
412 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
with torch.no_grad():
|
414 |
+
generated_ids = model.generate(
|
415 |
**inputs,
|
416 |
max_new_tokens=max_new_tokens,
|
417 |
do_sample=False,
|
418 |
temperature=0.1
|
419 |
)
|
420 |
+
|
421 |
+
generated_ids = [
|
422 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
423 |
]
|
424 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
425 |
+
return output_text
|
426 |
+
|
|
|
|
|
|
|
427 |
except Exception as e:
|
428 |
+
print(f"Error during inference: {e}")
|
429 |
+
traceback.print_exc()
|
430 |
return f"Error during inference: {str(e)}"
|
431 |
|
432 |
+
|
433 |
+
def process_image(
|
434 |
+
model_name: str,
|
435 |
+
image: Image.Image,
|
436 |
+
min_pixels: Optional[int] = None,
|
437 |
+
max_pixels: Optional[int] = None
|
438 |
+
) -> Dict[str, Any]:
|
439 |
+
"""Process a single image with the specified prompt mode"""
|
440 |
try:
|
441 |
+
# Resize image if needed
|
442 |
if min_pixels is not None or max_pixels is not None:
|
443 |
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
444 |
+
|
445 |
+
# Run inference with the default prompt
|
446 |
+
raw_output = inference(model_name, image, prompt)
|
447 |
+
|
448 |
+
# Process results based on prompt mode
|
449 |
result = {
|
450 |
'original_image': image,
|
451 |
'raw_output': raw_output,
|
|
|
453 |
'layout_result': None,
|
454 |
'markdown_content': None
|
455 |
}
|
456 |
+
|
457 |
+
# Try to parse JSON and create visualizations (since we're doing layout analysis)
|
458 |
try:
|
459 |
+
# Clean the output to be valid JSON
|
460 |
+
# Models sometimes add ```json ... ``` markers
|
461 |
+
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', raw_output)
|
462 |
+
if json_match:
|
463 |
+
json_str = json_match.group(1)
|
464 |
+
else:
|
465 |
+
json_str = raw_output
|
466 |
+
|
467 |
+
layout_data = json.loads(json_str)
|
468 |
result['layout_result'] = layout_data
|
469 |
+
|
470 |
+
# Create visualization with bounding boxes
|
471 |
+
try:
|
472 |
+
processed_image = draw_layout_on_image(image, layout_data)
|
473 |
+
result['processed_image'] = processed_image
|
474 |
+
except Exception as e:
|
475 |
+
print(f"Error drawing layout: {e}")
|
476 |
+
result['processed_image'] = image
|
477 |
+
|
478 |
+
# Generate markdown from layout data
|
479 |
+
try:
|
480 |
+
markdown_content = layoutjson2md(image, layout_data, text_key='text')
|
481 |
+
result['markdown_content'] = markdown_content
|
482 |
+
except Exception as e:
|
483 |
+
print(f"Error generating markdown: {e}")
|
484 |
+
result['markdown_content'] = raw_output
|
485 |
+
|
486 |
except json.JSONDecodeError:
|
487 |
print("Failed to parse JSON output, using raw output")
|
488 |
result['markdown_content'] = raw_output
|
489 |
+
|
490 |
return result
|
491 |
+
|
492 |
except Exception as e:
|
493 |
+
print(f"Error processing image: {e}")
|
494 |
+
traceback.print_exc()
|
495 |
return {
|
496 |
'original_image': image,
|
497 |
'raw_output': f"Error processing image: {str(e)}",
|
|
|
500 |
'markdown_content': f"Error processing image: {str(e)}"
|
501 |
}
|
502 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
503 |
|
|
|
504 |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
|
505 |
"""Load file for preview (supports PDF and images)"""
|
506 |
global pdf_cache
|
507 |
+
|
508 |
if not file_path or not os.path.exists(file_path):
|
509 |
return None, "No file selected"
|
510 |
+
|
511 |
+
file_ext = os.path.splitext(file_path).lower()
|
512 |
+
|
513 |
try:
|
514 |
if file_ext == '.pdf':
|
515 |
+
# Load PDF pages
|
516 |
images = load_images_from_pdf(file_path)
|
517 |
if not images:
|
518 |
return None, "Failed to load PDF"
|
519 |
+
|
520 |
pdf_cache.update({
|
521 |
"images": images,
|
522 |
"current_page": 0,
|
|
|
525 |
"is_parsed": False,
|
526 |
"results": []
|
527 |
})
|
528 |
+
|
529 |
+
return images, f"Page 1 / {len(images)}"
|
530 |
+
|
531 |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
|
532 |
+
# Load single image
|
533 |
image = Image.open(file_path).convert('RGB')
|
534 |
+
|
535 |
pdf_cache.update({
|
536 |
"images": [image],
|
537 |
"current_page": 0,
|
|
|
540 |
"is_parsed": False,
|
541 |
"results": []
|
542 |
})
|
543 |
+
|
544 |
return image, "Page 1 / 1"
|
545 |
else:
|
546 |
return None, f"Unsupported file format: {file_ext}"
|
547 |
+
|
548 |
except Exception as e:
|
549 |
print(f"Error loading file: {e}")
|
550 |
return None, f"Error loading file: {str(e)}"
|
551 |
|
552 |
+
|
553 |
+
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
|
554 |
"""Navigate through PDF pages and update all relevant outputs."""
|
555 |
global pdf_cache
|
556 |
+
|
557 |
if not pdf_cache["images"]:
|
558 |
+
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
|
559 |
+
|
560 |
if direction == "prev":
|
561 |
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
|
562 |
elif direction == "next":
|
563 |
+
pdf_cache["current_page"] = min(
|
564 |
+
pdf_cache["total_pages"] - 1,
|
565 |
+
pdf_cache["current_page"] + 1
|
566 |
+
)
|
567 |
+
|
568 |
index = pdf_cache["current_page"]
|
569 |
current_image_preview = pdf_cache["images"][index]
|
570 |
+
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
|
571 |
+
|
572 |
+
# Initialize default result values
|
573 |
+
markdown_content = "Page not processed yet"
|
574 |
+
processed_img = None
|
575 |
+
layout_json = None
|
576 |
+
|
577 |
+
# Get results for current page if available
|
578 |
+
if (pdf_cache["is_parsed"] and
|
579 |
+
index < len(pdf_cache["results"]) and
|
580 |
+
pdf_cache["results"][index]):
|
581 |
+
|
582 |
result = pdf_cache["results"][index]
|
583 |
+
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
|
584 |
+
processed_img = result.get('processed_image', None) # Get the processed image
|
585 |
+
layout_json = result.get('layout_result', None) # Get the layout JSON
|
586 |
+
|
587 |
+
# Check for Arabic text to set RTL property
|
588 |
+
if is_arabic_text(markdown_content):
|
589 |
+
markdown_update = gr.update(value=markdown_content, rtl=True)
|
590 |
else:
|
591 |
+
markdown_update = markdown_content
|
592 |
+
|
593 |
+
return current_image_preview, page_info_html, markdown_update, processed_img, layout_json
|
|
|
594 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
|
596 |
def create_gradio_interface():
|
597 |
"""Create the Gradio interface"""
|
598 |
+
|
599 |
css = """
|
600 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
601 |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
602 |
+
.process-button {
|
603 |
+
border: none !important;
|
604 |
+
color: white !important;
|
605 |
+
font-weight: bold !important;
|
606 |
+
background-color: blue !important;}
|
607 |
+
.process-button:hover {
|
608 |
background-color: darkblue !important;
|
609 |
+
transform: translateY(-2px) !important;
|
610 |
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
611 |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
|
612 |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
|
|
|
622 |
</p>
|
623 |
</div>
|
624 |
""")
|
625 |
+
|
626 |
+
# Main interface
|
627 |
with gr.Row():
|
628 |
+
# Left column - Input and controls
|
629 |
with gr.Column(scale=1):
|
630 |
+
|
631 |
+
# Model selection
|
632 |
model_choice = gr.Radio(
|
633 |
+
choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"],
|
634 |
label="Select Model",
|
635 |
+
value="Camel-Doc-OCR-062825"
|
636 |
)
|
637 |
+
|
638 |
+
# File input
|
639 |
file_input = gr.File(
|
640 |
label="Upload Image or PDF",
|
641 |
file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
|
642 |
type="filepath"
|
643 |
)
|
644 |
+
|
645 |
+
# Image preview
|
|
|
|
|
|
|
|
|
646 |
image_preview = gr.Image(
|
647 |
label="Preview",
|
648 |
type="pil",
|
649 |
interactive=False,
|
650 |
height=300
|
651 |
)
|
652 |
+
|
653 |
+
# Page navigation for PDFs
|
654 |
with gr.Row():
|
655 |
prev_page_btn = gr.Button("◀ Previous", size="md")
|
656 |
+
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
657 |
next_page_btn = gr.Button("Next ▶", size="md")
|
658 |
+
|
659 |
+
# Advanced settings
|
660 |
with gr.Accordion("Advanced Settings", open=False):
|
661 |
max_new_tokens = gr.Slider(
|
662 |
minimum=1000,
|
|
|
666 |
label="Max New Tokens",
|
667 |
info="Maximum number of tokens to generate"
|
668 |
)
|
669 |
+
|
670 |
min_pixels = gr.Number(
|
671 |
value=MIN_PIXELS,
|
672 |
label="Min Pixels",
|
673 |
info="Minimum image resolution"
|
674 |
)
|
675 |
+
|
676 |
max_pixels = gr.Number(
|
677 |
value=MAX_PIXELS,
|
678 |
+
label="Max Pixels",
|
679 |
info="Maximum image resolution"
|
680 |
)
|
681 |
+
|
682 |
+
# Process button
|
683 |
process_btn = gr.Button(
|
684 |
"🚀 Process Document",
|
685 |
variant="primary",
|
686 |
elem_classes=["process-button"],
|
687 |
size="lg"
|
688 |
)
|
689 |
+
|
690 |
+
# Clear button
|
691 |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
692 |
+
|
693 |
+
# Right column - Results
|
694 |
with gr.Column(scale=2):
|
695 |
+
|
696 |
+
# Results tabs
|
697 |
with gr.Tabs():
|
698 |
+
# Processed image tab
|
699 |
with gr.Tab("🖼️ Processed Image"):
|
700 |
processed_image = gr.Image(
|
701 |
label="Image with Layout Detection",
|
|
|
703 |
interactive=False,
|
704 |
height=500
|
705 |
)
|
706 |
+
# Markdown output tab
|
707 |
with gr.Tab("📝 Extracted Content"):
|
708 |
markdown_output = gr.Markdown(
|
709 |
value="Click 'Process Document' to see extracted content...",
|
710 |
height=500
|
711 |
)
|
712 |
+
# JSON layout tab
|
713 |
with gr.Tab("📋 Layout JSON"):
|
714 |
json_output = gr.JSON(
|
715 |
label="Layout Analysis Results",
|
|
|
717 |
)
|
718 |
|
719 |
# Event handlers
|
720 |
+
def process_document(model_name, file_path, max_tokens, min_pix, max_pix):
|
721 |
+
"""Process the uploaded document"""
|
722 |
+
global pdf_cache
|
723 |
+
|
724 |
+
try:
|
725 |
+
if not file_path:
|
726 |
+
return None, "Please upload a file first.", None
|
727 |
+
|
728 |
+
# Load and preview file
|
729 |
+
image, page_info = load_file_for_preview(file_path)
|
730 |
+
if image is None:
|
731 |
+
return None, page_info, None
|
732 |
+
|
733 |
+
# Process the image(s)
|
734 |
+
if pdf_cache["file_type"] == "pdf":
|
735 |
+
# Process all pages for PDF
|
736 |
+
all_results = []
|
737 |
+
all_markdown = []
|
738 |
+
|
739 |
+
for i, img in enumerate(pdf_cache["images"]):
|
740 |
+
result = process_image(
|
741 |
+
model_name,
|
742 |
+
img,
|
743 |
+
min_pixels=int(min_pix) if min_pix else None,
|
744 |
+
max_pixels=int(max_pix) if max_pix else None
|
745 |
+
)
|
746 |
+
all_results.append(result)
|
747 |
+
if result.get('markdown_content'):
|
748 |
+
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
|
749 |
+
|
750 |
+
pdf_cache["results"] = all_results
|
751 |
+
pdf_cache["is_parsed"] = True
|
752 |
+
|
753 |
+
# Show results for first page
|
754 |
+
first_result = all_results
|
755 |
+
combined_markdown = "\n\n---\n\n".join(all_markdown)
|
756 |
+
|
757 |
+
# Check if the combined markdown contains mostly Arabic text
|
758 |
+
if is_arabic_text(combined_markdown):
|
759 |
+
markdown_update = gr.update(value=combined_markdown, rtl=True)
|
760 |
+
else:
|
761 |
+
markdown_update = combined_markdown
|
762 |
+
|
763 |
+
return (
|
764 |
+
first_result['processed_image'],
|
765 |
+
markdown_update,
|
766 |
+
first_result['layout_result']
|
767 |
+
)
|
768 |
+
else:
|
769 |
+
# Process single image
|
770 |
+
result = process_image(
|
771 |
+
model_name,
|
772 |
+
image,
|
773 |
+
min_pixels=int(min_pix) if min_pix else None,
|
774 |
+
max_pixels=int(max_pix) if max_pix else None
|
775 |
+
)
|
776 |
+
|
777 |
+
pdf_cache["results"] = [result]
|
778 |
+
pdf_cache["is_parsed"] = True
|
779 |
+
|
780 |
+
# Check if the content contains mostly Arabic text
|
781 |
+
content = result['markdown_content'] or "No content extracted"
|
782 |
+
if is_arabic_text(content):
|
783 |
+
markdown_update = gr.update(value=content, rtl=True)
|
784 |
+
else:
|
785 |
+
markdown_update = content
|
786 |
+
|
787 |
+
return (
|
788 |
+
result['processed_image'],
|
789 |
+
markdown_update,
|
790 |
+
result['layout_result']
|
791 |
+
)
|
792 |
+
|
793 |
+
except Exception as e:
|
794 |
+
error_msg = f"Error processing document: {str(e)}"
|
795 |
+
print(error_msg)
|
796 |
+
traceback.print_exc()
|
797 |
+
return None, error_msg, None
|
798 |
+
|
799 |
+
def handle_file_upload(file_path):
|
800 |
+
"""Handle file upload and show preview"""
|
801 |
+
if not file_path:
|
802 |
+
return None, "No file loaded"
|
803 |
+
|
804 |
+
image, page_info = load_file_for_preview(file_path)
|
805 |
+
return image, page_info
|
806 |
+
|
807 |
+
def clear_all():
|
808 |
+
"""Clear all data and reset interface"""
|
809 |
+
global pdf_cache
|
810 |
+
|
811 |
+
pdf_cache = {
|
812 |
+
"images": [], "current_page": 0, "total_pages": 0,
|
813 |
+
"file_type": None, "is_parsed": False, "results": []
|
814 |
+
}
|
815 |
+
|
816 |
+
return (
|
817 |
+
None, # file_input
|
818 |
+
None, # image_preview
|
819 |
+
'<div class="page-info">No file loaded</div>', # page_info
|
820 |
+
None, # processed_image
|
821 |
+
"Click 'Process Document' to see extracted content...", # markdown_output
|
822 |
+
None, # json_output
|
823 |
+
)
|
824 |
+
|
825 |
+
# Wire up event handlers
|
826 |
file_input.change(
|
827 |
+
handle_file_upload,
|
828 |
inputs=[file_input],
|
829 |
outputs=[image_preview, page_info]
|
830 |
)
|
|
|
846 |
)
|
847 |
|
848 |
clear_btn.click(
|
849 |
+
clear_all,
|
850 |
+
outputs=[
|
851 |
+
file_input, image_preview, page_info, processed_image,
|
852 |
+
markdown_output, json_output
|
853 |
+
]
|
854 |
)
|
855 |
|
856 |
return demo
|
857 |
|
858 |
+
|
859 |
if __name__ == "__main__":
|
860 |
+
# Create and launch the interface
|
861 |
demo = create_gradio_interface()
|
862 |
+
demo.queue(max_size=10).launch(
|
863 |
+
server_name="0.0.0.0",
|
864 |
+
server_port=7860,
|
865 |
+
share=False,
|
866 |
+
debug=True,
|
867 |
+
show_error=True
|
868 |
+
)
|