File size: 10,972 Bytes
30d6225
 
 
c152910
30d6225
 
 
 
888b5aa
96f7759
30d6225
c152910
30d6225
9180057
96f7759
30d6225
 
 
 
db537bc
 
566263b
 
30d6225
db537bc
566263b
96f7759
db537bc
c152910
4148e9b
c152910
4148e9b
 
566263b
4148e9b
 
 
 
566263b
4148e9b
c152910
96f7759
30d6225
 
 
566263b
30d6225
 
 
 
 
566263b
30d6225
 
 
 
 
566263b
30d6225
 
 
 
 
566263b
30d6225
 
566263b
30d6225
 
566263b
b789dc3
566263b
 
b789dc3
 
 
 
 
566263b
 
 
b789dc3
566263b
 
b789dc3
 
 
 
566263b
 
 
 
 
 
 
 
 
b789dc3
566263b
 
b789dc3
 
566263b
b789dc3
 
566263b
b789dc3
 
566263b
96f7759
b789dc3
566263b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f7759
566263b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f7759
566263b
 
96f7759
566263b
 
db537bc
c152910
566263b
c152910
 
566263b
 
c152910
db537bc
c152910
 
f17f462
c152910
566263b
c152910
 
 
566263b
db537bc
566263b
c152910
9ebf911
30d6225
db537bc
30d6225
db537bc
566263b
db537bc
566263b
 
9ebf911
db537bc
566263b
 
c152910
 
db537bc
566263b
 
 
 
b789dc3
566263b
 
 
 
 
 
 
 
888b5aa
566263b
 
 
888b5aa
566263b
 
888b5aa
566263b
 
888b5aa
566263b
c152910
 
 
db537bc
566263b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import time
from threading import Thread

import gradio as gr
import requests
import torch
from PIL import Image
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)

# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = "cuda" if torch.cuda.is_available() else "cpu"

# The detailed prompt to instruct the model to generate structured JSON
prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox.

1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
    - Picture: For the 'Picture' category, the text field should be omitted.
    - Formula: Format its text as LaTeX.
    - Table: For tables, provide the content in a structured format within the JSON.
    - All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
    - The output text must be the original text from the image, with no translation.
    - All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object wrapped in ```json ... ```.
"""

# Load models
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_C = "nanonets/Nanonets-OCR-s"
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
).to(device).eval()

# --- Utility Functions ---

def layoutjson2md(layout_data: List[Dict]) -> str:
    """Converts the structured JSON layout data into formatted Markdown."""
    markdown_lines = []
    try:
        sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
        for item in sorted_items:
            category = item.get('category', '')
            text = item.get('text', '')

            if not text:
                continue
            
            if category == 'Title':
                markdown_lines.append(f"# {text}\n")
            elif category == 'Section-header':
                markdown_lines.append(f"## {text}\n")
            elif category == 'Table':
                # Check if the text is a dictionary representing a structured table
                if isinstance(text, dict) and 'header' in text and 'rows' in text:
                    header = '| ' + ' | '.join(map(str, text['header'])) + ' |'
                    separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |'
                    rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']]
                    markdown_lines.append(header)
                    markdown_lines.append(separator)
                    markdown_lines.extend(rows)
                    markdown_lines.append("\n")
                else:
                    # Fallback for unstructured table text
                    markdown_lines.append(f"{text}\n")
            else:
                markdown_lines.append(f"{text}\n")
                
    except Exception as e:
        print(f"Error converting to markdown: {e}")
        return "### Error converting JSON to Markdown."
    return "\n".join(markdown_lines)

# --- Core Application Logic ---

@spaces.GPU
def process_document_stream(model_name: str, image: Image.Image, text_prompt: str, max_new_tokens: int):
    """
    Main generator function that streams raw model output and then processes it into
    formatted Markdown and structured JSON for the UI.
    """
    if image is None:
        yield "Please upload an image.", "Please upload an image.", None
        return

    # Select the model and processor
    if model_name == "Camel-Doc-OCR-062825": processor, model = processor_m, model_m
    elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t
    elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c
    elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g
    else:
        yield "Invalid model selected.", "Invalid model selected.", None
        return

    # Prepare model inputs
    messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
    
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    
    # Start generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    # Stream raw output to the UI
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        # Yield the raw stream and placeholders for the final results
        yield buffer, "⏳ Formatting Markdown...", {"status": "processing"}

    # After streaming is complete, process the final buffer
    try:
        # Extract the JSON object from the buffer
        json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
        if not json_match:
            raise json.JSONDecodeError("JSON object not found in the model's output.", buffer, 0)
        
        json_str = json_match.group(1)
        layout_data = json.loads(json_str)
        
        # Convert the parsed JSON to formatted markdown
        markdown_content = layoutjson2md(layout_data)
        
        # Yield the final, complete results
        yield buffer, markdown_content, layout_data

    except json.JSONDecodeError as e:
        print(f"JSON parsing failed: {e}")
        error_md = f"❌ **Error:** Failed to parse JSON from the model's output.\n\nSee the raw output stream for details."
        error_json = {"error": "JSONDecodeError", "details": str(e), "raw_output": buffer}
        yield buffer, error_md, error_json
    except Exception as e:
        print(f"An unexpected error occurred: {e}")
        yield buffer, f"❌ An unexpected error occurred: {e}", None


# --- Gradio UI Definition ---

def create_gradio_interface():
    """Builds and returns the Gradio web interface."""
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;} 
    .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
    """
    with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>Dot<span style="color: red;">●</span><strong></strong>OCR Comparator</h1>
            <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
                Advanced Vision-Language Model for Image Layout Analysis
            </p>
        </div>
        """)
        
        with gr.Row():
            # --- Left Column (Inputs) ---
            with gr.Column(scale=1):
                model_choice = gr.Radio(
                    choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"],
                    label="Select Model",
                    value="Camel-Doc-OCR-062825"
                )
                image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
                with gr.Accordion("Advanced Settings", open=False):
                    max_new_tokens = gr.Slider(minimum=1000, maximum=8192, value=4096, step=256, label="Max New Tokens")
                
                process_btn = gr.Button("πŸš€ Process Document", variant="primary", elem_classes=["process-button"], size="lg")
                clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")

            # --- Right Column (Outputs) ---
            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("πŸ“ Extracted Content"):
                        raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True)
                        with gr.Accordion("(Formatted Result)", open=True):
                            markdown_output = gr.Markdown(label="Formatted Markdown (from JSON)")
                    
                    with gr.Tab("πŸ“‹ Layout Analysis Results"):
                        json_output = gr.JSON(label="Structured Layout Data (JSON)", value=None)
        
        # --- Event Handlers ---
        def clear_all_outputs():
            """Resets all input and output fields to their default state."""
            return None, "Raw output will appear here.", "Formatted results will appear here.", None

        # Connect the process button to the main generator function
        process_btn.click(
            fn=process_document_stream,
            inputs=[model_choice, image_input, gr.Textbox(value=prompt, visible=False), max_new_tokens],
            outputs=[raw_output_stream, markdown_output, json_output]
        )

        # Connect the clear button
        clear_btn.click(
            clear_all_outputs,
            outputs=[image_input, raw_output_stream, markdown_output, json_output]
        )

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue().launch(server_name="0.0.0.0", server_port=7860, show_error=True)