File size: 18,479 Bytes
30d6225
 
 
c152910
30d6225
 
 
 
888b5aa
96f7759
30d6225
c152910
30d6225
9180057
96f7759
30d6225
 
 
 
db537bc
96f7759
db537bc
 
c152910
 
 
96f7759
30d6225
db537bc
96f7759
 
db537bc
c152910
db537bc
4148e9b
db537bc
c152910
4148e9b
 
 
 
db537bc
4148e9b
 
 
db537bc
4148e9b
 
c152910
96f7759
30d6225
 
 
96f7759
 
 
30d6225
 
 
 
 
96f7759
 
 
30d6225
 
 
 
 
96f7759
 
 
30d6225
 
 
 
 
96f7759
 
 
30d6225
 
96f7759
 
 
 
30d6225
 
888b5aa
96f7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30d6225
 
 
96f7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30d6225
 
96f7759
30d6225
 
96f7759
30d6225
9ebf911
30d6225
db537bc
 
 
 
 
9ebf911
db537bc
 
 
 
 
 
 
96f7759
 
 
 
 
 
 
 
1a3e75e
96f7759
1a3e75e
db537bc
96f7759
1a3e75e
96f7759
1a3e75e
db537bc
 
 
 
 
 
 
 
 
 
96f7759
 
 
 
 
 
 
1a3e75e
96f7759
 
db537bc
 
 
96f7759
 
 
 
db537bc
96f7759
4148e9b
db537bc
96f7759
db537bc
 
1a3e75e
30d6225
96f7759
db537bc
96f7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db537bc
96f7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a74e8
 
96f7759
59a74e8
 
96f7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db537bc
c152910
 
 
 
9ebf911
96f7759
 
 
 
9ebf911
96f7759
 
 
 
 
 
 
c152910
db537bc
c152910
 
f17f462
c152910
888b5aa
c152910
 
 
db537bc
c152910
9ebf911
30d6225
db537bc
30d6225
db537bc
96f7759
888b5aa
96f7759
 
db537bc
96f7759
db537bc
9ebf911
96f7759
 
9ebf911
db537bc
c152910
 
db537bc
96f7759
 
 
4148e9b
96f7759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30d6225
96f7759
 
888b5aa
96f7759
 
 
888b5aa
 
 
96f7759
888b5aa
c152910
 
 
db537bc
96f7759
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import time
from threading import Thread

import gradio as gr
import requests
import torch
from PIL import Image
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from qwen_vl_utils import process_vision_info

# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
MAX_INPUT_TOKEN_LENGTH = 2048
device = "cuda" if torch.cuda.is_available() else "cpu"

# Prompts
prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox.

1. Bbox format: [x1, y1, x2, y2]

2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].

3. Text Extraction & Formatting Rules:
    - Picture: For the 'Picture' category, the text field should be omitted.
    - Formula: Format its text as LaTeX.
    - Table: Format its text as HTML.
    - All Others (Text, Title, etc.): Format their text as Markdown.

4. Constraints:
    - The output text must be the original text from the image, with no translation.
    - All layout elements must be sorted according to human reading order.

5. Final Output: The entire output must be a single JSON object.
"""

# Load models
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_C = "nanonets/Nanonets-OCR-s"
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_C,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_G,
    trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16
).to(device).eval()

# Utility functions
def round_by_factor(number: int, factor: int) -> int:
    return round(number / factor) * factor

def smart_resize(
    height: int,
    width: int,
    factor: int = 28,
    min_pixels: int = 3136,
    max_pixels: int = 11289600,
):
    if max(height, width) / min(height, width) > 200:
        raise ValueError(f"Aspect ratio too extreme: {max(height, width) / min(height, width)}")
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = round_by_factor(height / beta, factor)
        w_bar = round_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = round_by_factor(height * beta, factor)
        w_bar = round_by_factor(width * beta, factor)
    return h_bar, w_bar

def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
    if isinstance(image_input, str):
        if image_input.startswith(("http://", "https://")):
            response = requests.get(image_input)
            image = Image.open(BytesIO(response.content)).convert('RGB')
        else:
            image = Image.open(image_input).convert('RGB')
    elif isinstance(image_input, Image.Image):
        image = image_input.convert('RGB')
    else:
        raise ValueError(f"Invalid image input type: {type(image_input)}")
    if min_pixels or max_pixels:
        min_pixels = min_pixels or MIN_PIXELS
        max_pixels = max_pixels or MAX_PIXELS
        height, width = smart_resize(image.height, image.width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
        image = image.resize((width, height), Image.LANCZOS)
    return image

def is_arabic_text(text: str) -> bool:
    if not text:
        return False
    header_pattern = r'^#{1,6}\s+(.+)$'
    paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
    content_text = []
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            continue
        header_match = re.match(header_pattern, line, re.MULTILINE)
        if header_match:
            content_text.append(header_match.group(1))
            continue
        if re.match(paragraph_pattern, line, re.MULTILINE):
            content_text.append(line)
    if not content_text:
        return False
    combined_text = ' '.join(content_text)
    arabic_chars = 0
    total_chars = 0
    for char in combined_text:
        if char.isalpha():
            total_chars += 1
            if ('\u0600' <= char <= '\u06FF') or ('\u0750' <= char <= '\u077F') or ('\u08A0' <= char <= '\u08FF'):
                arabic_chars += 1
    return total_chars > 0 and (arabic_chars / total_chars) > 0.5

def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
    import base64
    from io import BytesIO
    markdown_lines = []
    try:
        sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
        for item in sorted_items:
            category = item.get('category', '')
            text = item.get(text_key, '')
            bbox = item.get('bbox', [])
            if category == 'Picture':
                if bbox and len(bbox) == 4:
                    try:
                        x1, y1, x2, y2 = bbox
                        x1, y1 = max(0, int(x1)), max(0, int(y1))
                        x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
                        if x2 > x1 and y2 > y1:
                            cropped_img = image.crop((x1, y1, x2, y2))
                            buffer = BytesIO()
                            cropped_img.save(buffer, format='PNG')
                            img_data = base64.b64encode(buffer.getvalue()).decode()
                            markdown_lines.append(f"![Image](data:image/png;base64,{img_data})\n")
                        else:
                            markdown_lines.append("![Image](Image region detected)\n")
                    except Exception as e:
                        print(f"Error processing image region: {e}")
                        markdown_lines.append("![Image](Image detected)\n")
                else:
                    markdown_lines.append("![Image](Image detected)\n")
            elif not text:
                continue
            elif category == 'Title':
                markdown_lines.append(f"# {text}\n")
            elif category == 'Section-header':
                markdown_lines.append(f"## {text}\n")
            elif category == 'Text':
                markdown_lines.append(f"{text}\n")
            elif category == 'List-item':
                markdown_lines.append(f"- {text}\n")
            elif category == 'Table':
                if text.strip().startswith('<'):
                    markdown_lines.append(f"{text}\n")
                else:
                    markdown_lines.append(f"**Table:** {text}\n")
            elif category == 'Formula':
                if text.strip().startswith('$') or '\\' in text:
                    markdown_lines.append(f"$$\n{text}\n$$\n")
                else:
                    markdown_lines.append(f"**Formula:** {text}\n")
            elif category == 'Caption':
                markdown_lines.append(f"*{text}*\n")
            elif category == 'Footnote':
                markdown_lines.append(f"^{text}^\n")
            elif category in ['Page-header', 'Page-footer']:
                continue
            else:
                markdown_lines.append(f"{text}\n")
            markdown_lines.append("")
    except Exception as e:
        print(f"Error converting to markdown: {e}")
        return str(layout_data)
    return "\n".join(markdown_lines)


@spaces.GPU
def inference(model_name: str, image: Image.Image, text: str, max_new_tokens: int = 1024) -> str:
    try:
        if model_name == "Camel-Doc-OCR-062825":
            processor = processor_m
            model = model_m
        elif model_name == "Megalodon-OCR-Sync-0713":
            processor = processor_t
            model = model_t
        elif model_name == "Nanonets-OCR-s":
            processor = processor_c
            model = model_c
        elif model_name == "MonkeyOCR-Recognition":
            processor = processor_g
            model = model_g
        else:
            raise ValueError(f"Invalid model selected: {model_name}")

        if image is None:
            yield "Please upload an image.", "Please upload an image."
            return

        messages = [{
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": text},
            ]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(
            text=[prompt_full],
            images=[image],
            return_tensors="pt",
            padding=True,
            truncation=False,
            max_length=MAX_INPUT_TOKEN_LENGTH
        ).to(device)
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer, buffer
    except Exception as e:
        print(f"Error during inference: {e}")
        traceback.print_exc()
        yield f"Error during inference: {str(e)}", f"Error during inference: {str(e)}"

def process_image(
    model_name: str,
    image: Image.Image,
    min_pixels: Optional[int] = None,
    max_pixels: Optional[int] = None,
    max_new_tokens: int = 1024
) -> Dict[str, Any]:
    try:
        if min_pixels or max_pixels:
            image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
        result = {
            'original_image': image,
            'raw_output': "",
            'layout_result': None,
            'markdown_content': None
        }
        buffer = ""
        for raw_output, _ in inference(model_name, image, prompt, max_new_tokens):
            buffer = raw_output
            result['raw_output'] = buffer
            yield result
        try:                                       
            json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
            json_str = json_match.group(1) if json_match else buffer
            layout_data = json.loads(json_str)                       
                                   
            result['layout_result'] = layout_data
            try:
                markdown_content = layoutjson2md(image, layout_data, text_key='text')
                result['markdown_content'] = markdown_content
            except Exception as e:
                print(f"Error generating markdown: {e}")
                result['markdown_content'] = buffer
        except json.JSONDecodeError:
            print("Failed to parse JSON output, using raw output")
            result['markdown_content'] = buffer
        yield result
    except Exception as e:
        print(f"Error processing image: {e}")
        traceback.print_exc()
        result = {
            'original_image': image,
            'raw_output': f"Error processing image: {str(e)}",
            'layout_result': None,
            'markdown_content': f"Error processing image: {str(e)}"
        }
        yield result

def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
    if not file_path or not os.path.exists(file_path):
        return None, "No file selected"
    file_ext = os.path.splitext(file_path)[1].lower()
    try:
        if file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
            image = Image.open(file_path).convert('RGB')
            return image, "Image loaded"
        else:
            return None, f"Unsupported file format: {file_ext}"
    except Exception as e:
        print(f"Error loading file: {e}")
        return None, f"Error loading file: {str(e)}"

def create_gradio_interface():
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
    .process-button { 
        border: none !important; 
        color: white !important; 
        font-weight: bold !important; 
        background-color: blue !important;} 
    .process-button:hover { 
        background-color: darkblue !important;
        transform: translateY(-2px) !important; 
        box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
    .info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
    .page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
    .model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
    .status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
    """
    with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>Dot<span style="color: red;">●</span><strong></strong>OCR Comparator</h1>
            <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
                Advanced vision-language model for image to markdown document processing
            </p>
        </div>
        """)
        with gr.Row():
            with gr.Column(scale=1):
                model_choice = gr.Radio(
                    choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"],
                    label="Select Model",
                    value="Camel-Doc-OCR-062825"
                )
                file_input = gr.File(
                    label="Upload Image",
                    file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff"],
                    type="filepath"
                )
                image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
                with gr.Accordion("Advanced Settings", open=False):
                    max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
                    min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
                    max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
                process_btn = gr.Button("πŸš€ Process Document", variant="primary", elem_classes=["process-button"], size="lg")
                clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("πŸ“ Extracted Content"):
                        output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2, show_copy_button=True)
                        with gr.Accordion("(Result.md)", open=False):
                            markdown_output = gr.Markdown(label="Formatted Result (Result.Md)")
                    with gr.Tab("πŸ“‹ Layout JSON"):
                        json_output = gr.JSON(label="Layout Analysis Results", value=None)
        def process_document(model_name, file_path, max_tokens, min_pix, max_pix):
            try:
                if not file_path:
                    return "Please upload an image.", "Please upload an image.", None
                image, status = load_file_for_preview(file_path)
                if image is None:
                    return status, status, None
                for result in process_image(model_name, image, min_pixels=int(min_pix) if min_pix else None, max_pixels=int(max_pix) if max_pix else None, max_new_tokens=max_tokens):
                    raw_output = result['raw_output']
                    markdown_content = result['markdown_content'] or raw_output
                    if is_arabic_text(markdown_content):
                        markdown_update = gr.update(value=markdown_content, rtl=True)
                    else:
                        markdown_update = markdown_content
                    yield raw_output, markdown_update, result['layout_result']
            except Exception as e:
                error_msg = f"Error processing document: {str(e)}"
                print(error_msg)
                traceback.print_exc()
                yield error_msg, error_msg, None
        def handle_file_upload(file_path):
            if not file_path:
                return None, "No file loaded"
            image, page_info = load_file_for_preview(file_path)
            return image, page_info
        def clear_all():
            return None, None, "No file loaded", "", "Click 'Process Document' to see extracted content...", None
        file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, output])
        process_btn.click(
            process_document,
            inputs=[model_choice, file_input, max_new_tokens, min_pixels, max_pixels],
            outputs=[output, markdown_output, json_output]
        )
        clear_btn.click(
            clear_all,
            outputs=[file_input, image_preview, output, markdown_output, json_output]
        )
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue(max_size=10).launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True, show_error=True)