Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,067 Bytes
0c1b8f7 a01646a b06a87f a01646a 0c1b8f7 fca22b9 0c1b8f7 a01646a 32d8e74 a01646a fca22b9 a01646a 9183b07 fca22b9 40dd3a7 9183b07 40dd3a7 34d2094 fca22b9 d6b5ac6 40dd3a7 fca22b9 0886910 fca22b9 d7f29b6 7f471f2 b06a87f 83a0174 40dd3a7 83a0174 a01646a 6c3e861 a01646a 6c3e861 a01646a 43f0687 6c3e861 a01646a 43f0687 a01646a 43f0687 a01646a 9183b07 48a6837 40dd3a7 9183b07 6c3e861 9183b07 40dd3a7 fca22b9 a592e13 40dd3a7 9183b07 a01646a 9183b07 a01646a 40dd3a7 9183b07 40dd3a7 c9c7955 40dd3a7 a01646a 40dd3a7 a01646a 40dd3a7 a01646a 40dd3a7 a01646a 40dd3a7 ea9ba29 fca22b9 0ba4242 fca22b9 40dd3a7 ea9ba29 40dd3a7 ea9ba29 0ba4242 40dd3a7 4bcff80 40dd3a7 45d61ba 40dd3a7 9183b07 0ba4242 fca22b9 40dd3a7 0ba4242 fca22b9 0ba4242 47473ae 0c1b8f7 6c3e861 2aadb64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
# Additional imports for 3D model generation
import tempfile
import trimesh
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
from diffusers.utils import export_to_ply
DESCRIPTION = """
# QwQ Edge 💬
"""
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
"""
Filter out any chat entries whose "content" is not a string.
This helps prevent errors when concatenating previous messages.
"""
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
# Environment variables and parameters for Stable Diffusion XL
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
# Load the SDXL pipeline
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID_SD,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
# Ensure that the text encoder is in half-precision if using CUDA.
if torch.cuda.is_available():
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
# Optional: compile the model for speedup if enabled
if USE_TORCH_COMPILE:
sd_pipe.compile()
# Optional: offload parts of the model to CPU if needed
if ENABLE_CPU_OFFLOAD:
sd_pipe.enable_model_cpu_offload()
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return the path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 1,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True),
):
"""Generate images using the SDXL pipeline."""
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
# Process in batches
for i in range(0, num_images, BATCH_SIZE):
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
# Wrap the pipeline call in autocast if using CUDA
if device.type == "cuda":
with torch.autocast("cuda", dtype=torch.float16):
outputs = sd_pipe(**batch_options)
else:
outputs = sd_pipe(**batch_options)
images.extend(outputs.images)
image_paths = [save_image(img) for img in images]
return image_paths, seed
# ============================================================
# 3D Model Generation using ShapE (Text-to-3D / Image-to-3D)
# ============================================================
class Model3D:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
self.pipe.to(self.device)
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
self.pipe_img.to(self.device)
def to_glb(self, ply_path: str) -> str:
mesh = trimesh.load(ply_path)
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
mesh = mesh.apply_transform(rot)
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
mesh = mesh.apply_transform(rot)
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
mesh.export(mesh_path.name, file_type="glb")
return mesh_path.name
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
generator = torch.Generator(device=self.device).manual_seed(seed)
images = self.pipe(
prompt,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
output_type="mesh",
).images
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
export_to_ply(images[0], ply_path.name)
return self.to_glb(ply_path.name)
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
generator = torch.Generator(device=self.device).manual_seed(seed)
images = self.pipe_img(
image,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
output_type="mesh",
).images
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
export_to_ply(images[0], ply_path.name)
return self.to_glb(ply_path.name)
# Create a global instance of the 3D model generator.
model_3d = Model3D()
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
"""
Generates chatbot responses with support for multimodal input, TTS, image generation,
and 3D model generation.
Special commands:
- "@tts1" or "@tts2": triggers text-to-speech.
- "@image": triggers image generation using the SDXL pipeline.
- "@3d": triggers 3D model generation using the ShapE pipeline.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
# ------------------------------
# 3D Model Generation Command
# ------------------------------
if text.strip().lower().startswith("@3d"):
# Remove the "@3d" tag and use the remaining text as the prompt.
text = text[len("@3d"):].strip()
yield "Generating 3D model..."
seed = random.randint(0, MAX_SEED)
if files:
# If an image is provided, use image-to-3D.
image = load_image(files[0])
glb_file = model_3d.run_image(image, seed=seed)
else:
# Otherwise, generate a 3D model from the text prompt.
glb_file = model_3d.run_text(text, seed=seed)
# Yield the generated GLB file as a downloadable file.
yield gr.File(glb_file)
return
# ------------------------------
# Image Generation Command
# ------------------------------
if text.strip().lower().startswith("@image"):
# Remove the "@image" tag and use the rest as prompt.
prompt = text[len("@image"):].strip()
yield "Generating image..."
image_paths, used_seed = generate_image_fn(
prompt=prompt,
negative_prompt="",
use_negative_prompt=False,
seed=1,
width=1024,
height=1024,
guidance_scale=3,
num_inference_steps=25,
randomize_seed=True,
use_resolution_binning=True,
num_images=1,
)
yield gr.Image(image_paths[0])
return # Exit early
# ------------------------------
# TTS / Regular Text Generation
# ------------------------------
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if is_tts and voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
# Clear previous chat history for a fresh TTS request.
conversation = [{"role": "user", "content": text}]
else:
voice = None
# Remove any stray @tts tags and build the conversation history.
text = text.replace(tts_prefix, "").strip()
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield "Thinking..."
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
# If TTS was requested, convert the final response to speech.
if is_tts and voice:
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["@tts1 Who is Nikola Tesla, and why did he die?"],
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
["Write a Python function to check if a number is prime."],
["@tts2 What causes rainbows to form?"],
["@3d A futuristic spaceship in low-poly style"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
# To create a public link, set share=True in launch().
demo.queue(max_size=20).launch(share=True) |