Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,31 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from threading import Thread
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import spaces
|
| 5 |
import torch
|
|
|
|
|
|
|
| 6 |
import edge_tts
|
| 7 |
-
|
| 8 |
-
from transformers import
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from transformers.image_utils import load_image
|
| 11 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
DESCRIPTION = """
|
| 14 |
# QwQ Edge 💬
|
|
@@ -44,6 +61,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
| 44 |
)
|
| 45 |
model.eval()
|
| 46 |
|
|
|
|
| 47 |
TTS_VOICES = [
|
| 48 |
"en-US-JennyNeural", # @tts1
|
| 49 |
"en-US-GuyNeural", # @tts2
|
|
@@ -75,6 +93,93 @@ def clean_chat_history(chat_history):
|
|
| 75 |
cleaned.append(msg)
|
| 76 |
return cleaned
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
@spaces.GPU
|
| 79 |
def generate(
|
| 80 |
input_dict: dict,
|
|
@@ -86,20 +191,41 @@ def generate(
|
|
| 86 |
repetition_penalty: float = 1.2,
|
| 87 |
):
|
| 88 |
"""
|
| 89 |
-
Generates chatbot responses with support for multimodal input and
|
| 90 |
-
If the query starts with
|
|
|
|
|
|
|
| 91 |
"""
|
| 92 |
text = input_dict["text"]
|
| 93 |
files = input_dict.get("files", [])
|
| 94 |
|
| 95 |
-
#
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
|
|
|
|
|
|
|
|
|
| 103 |
tts_prefix = "@tts"
|
| 104 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 105 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
@@ -107,16 +233,25 @@ def generate(
|
|
| 107 |
if is_tts and voice_index:
|
| 108 |
voice = TTS_VOICES[voice_index - 1]
|
| 109 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
| 110 |
-
# Clear
|
| 111 |
conversation = [{"role": "user", "content": text}]
|
| 112 |
else:
|
| 113 |
voice = None
|
|
|
|
| 114 |
text = text.replace(tts_prefix, "").strip()
|
| 115 |
conversation = clean_chat_history(chat_history)
|
| 116 |
conversation.append({"role": "user", "content": text})
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
messages = [{
|
| 121 |
"role": "user",
|
| 122 |
"content": [
|
|
@@ -139,7 +274,9 @@ def generate(
|
|
| 139 |
time.sleep(0.01)
|
| 140 |
yield buffer
|
| 141 |
else:
|
| 142 |
-
#
|
|
|
|
|
|
|
| 143 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 144 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 145 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
@@ -168,10 +305,15 @@ def generate(
|
|
| 168 |
final_response = "".join(outputs)
|
| 169 |
yield final_response
|
| 170 |
|
|
|
|
| 171 |
if is_tts and voice:
|
| 172 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 173 |
yield gr.Audio(output_file, autoplay=True)
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
demo = gr.ChatInterface(
|
| 176 |
fn=generate,
|
| 177 |
additional_inputs=[
|
|
@@ -188,6 +330,7 @@ demo = gr.ChatInterface(
|
|
| 188 |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
|
| 189 |
["Write a Python function to check if a number is prime."],
|
| 190 |
["@tts2 What causes rainbows to form?"],
|
|
|
|
| 191 |
],
|
| 192 |
cache_examples=False,
|
| 193 |
type="messages",
|
|
|
|
| 1 |
import os
|
| 2 |
+
import random
|
| 3 |
+
import uuid
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
import asyncio
|
| 7 |
from threading import Thread
|
| 8 |
+
|
| 9 |
import gradio as gr
|
| 10 |
import spaces
|
| 11 |
import torch
|
| 12 |
+
import numpy as np
|
| 13 |
+
from PIL import Image
|
| 14 |
import edge_tts
|
| 15 |
+
|
| 16 |
+
from transformers import (
|
| 17 |
+
AutoModelForCausalLM,
|
| 18 |
+
AutoTokenizer,
|
| 19 |
+
TextIteratorStreamer,
|
| 20 |
+
Qwen2VLForConditionalGeneration,
|
| 21 |
+
AutoProcessor,
|
| 22 |
+
)
|
| 23 |
from transformers.image_utils import load_image
|
| 24 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 25 |
+
|
| 26 |
+
# ============================================
|
| 27 |
+
# CHAT & TTS SETUP
|
| 28 |
+
# ============================================
|
| 29 |
|
| 30 |
DESCRIPTION = """
|
| 31 |
# QwQ Edge 💬
|
|
|
|
| 61 |
)
|
| 62 |
model.eval()
|
| 63 |
|
| 64 |
+
# TTS voices
|
| 65 |
TTS_VOICES = [
|
| 66 |
"en-US-JennyNeural", # @tts1
|
| 67 |
"en-US-GuyNeural", # @tts2
|
|
|
|
| 93 |
cleaned.append(msg)
|
| 94 |
return cleaned
|
| 95 |
|
| 96 |
+
# ============================================
|
| 97 |
+
# IMAGE GENERATION SETUP
|
| 98 |
+
# ============================================
|
| 99 |
+
|
| 100 |
+
# Environment variables and parameters for Stable Diffusion XL
|
| 101 |
+
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # Use SDXL Model repo path via MODEL_VAL_PATH env var
|
| 102 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 103 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 104 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 105 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For potential batched image generation
|
| 106 |
+
|
| 107 |
+
# Load the SDXL pipeline
|
| 108 |
+
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 109 |
+
MODEL_ID_SD,
|
| 110 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 111 |
+
use_safetensors=True,
|
| 112 |
+
add_watermarker=False,
|
| 113 |
+
).to(device)
|
| 114 |
+
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
| 115 |
+
|
| 116 |
+
# Optional: compile the model for speedup
|
| 117 |
+
if USE_TORCH_COMPILE:
|
| 118 |
+
sd_pipe.compile()
|
| 119 |
+
|
| 120 |
+
# Optional: offload parts of the model to CPU if needed
|
| 121 |
+
if ENABLE_CPU_OFFLOAD:
|
| 122 |
+
sd_pipe.enable_model_cpu_offload()
|
| 123 |
+
|
| 124 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 125 |
+
|
| 126 |
+
def save_image(img: Image.Image) -> str:
|
| 127 |
+
"""Save a PIL image with a unique filename and return the path."""
|
| 128 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
| 129 |
+
img.save(unique_name)
|
| 130 |
+
return unique_name
|
| 131 |
+
|
| 132 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 133 |
+
if randomize_seed:
|
| 134 |
+
seed = random.randint(0, MAX_SEED)
|
| 135 |
+
return seed
|
| 136 |
+
|
| 137 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
| 138 |
+
def generate_image_fn(
|
| 139 |
+
prompt: str,
|
| 140 |
+
negative_prompt: str = "",
|
| 141 |
+
use_negative_prompt: bool = False,
|
| 142 |
+
seed: int = 1,
|
| 143 |
+
width: int = 1024,
|
| 144 |
+
height: int = 1024,
|
| 145 |
+
guidance_scale: float = 3,
|
| 146 |
+
num_inference_steps: int = 25,
|
| 147 |
+
randomize_seed: bool = False,
|
| 148 |
+
use_resolution_binning: bool = True,
|
| 149 |
+
num_images: int = 1,
|
| 150 |
+
progress=gr.Progress(track_tqdm=True),
|
| 151 |
+
):
|
| 152 |
+
"""Generate images using the SDXL pipeline."""
|
| 153 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 154 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 155 |
+
|
| 156 |
+
options = {
|
| 157 |
+
"prompt": [prompt] * num_images,
|
| 158 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
| 159 |
+
"width": width,
|
| 160 |
+
"height": height,
|
| 161 |
+
"guidance_scale": guidance_scale,
|
| 162 |
+
"num_inference_steps": num_inference_steps,
|
| 163 |
+
"generator": generator,
|
| 164 |
+
"output_type": "pil",
|
| 165 |
+
}
|
| 166 |
+
if use_resolution_binning:
|
| 167 |
+
options["use_resolution_binning"] = True
|
| 168 |
+
|
| 169 |
+
images = []
|
| 170 |
+
for i in range(0, num_images, BATCH_SIZE):
|
| 171 |
+
batch_options = options.copy()
|
| 172 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
| 173 |
+
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
| 174 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
| 175 |
+
images.extend(sd_pipe(**batch_options).images)
|
| 176 |
+
image_paths = [save_image(img) for img in images]
|
| 177 |
+
return image_paths, seed
|
| 178 |
+
|
| 179 |
+
# ============================================
|
| 180 |
+
# MAIN GENERATION FUNCTION (CHAT)
|
| 181 |
+
# ============================================
|
| 182 |
+
|
| 183 |
@spaces.GPU
|
| 184 |
def generate(
|
| 185 |
input_dict: dict,
|
|
|
|
| 191 |
repetition_penalty: float = 1.2,
|
| 192 |
):
|
| 193 |
"""
|
| 194 |
+
Generates chatbot responses with support for multimodal input, TTS, and now image generation.
|
| 195 |
+
If the query starts with:
|
| 196 |
+
- "@tts1" or "@tts2", it triggers text-to-speech.
|
| 197 |
+
- "@image", it triggers image generation using the SDXL pipeline.
|
| 198 |
"""
|
| 199 |
text = input_dict["text"]
|
| 200 |
files = input_dict.get("files", [])
|
| 201 |
|
| 202 |
+
# ----------------------------
|
| 203 |
+
# NEW: IMAGE GENERATION BRANCH
|
| 204 |
+
# ----------------------------
|
| 205 |
+
if text.strip().lower().startswith("@image"):
|
| 206 |
+
# Remove the "@image" tag and use the rest as prompt
|
| 207 |
+
prompt = text[len("@image"):].strip()
|
| 208 |
+
yield "Generating image..."
|
| 209 |
+
image_paths, used_seed = generate_image_fn(
|
| 210 |
+
prompt=prompt,
|
| 211 |
+
negative_prompt="",
|
| 212 |
+
use_negative_prompt=False,
|
| 213 |
+
seed=1,
|
| 214 |
+
width=1024,
|
| 215 |
+
height=1024,
|
| 216 |
+
guidance_scale=3,
|
| 217 |
+
num_inference_steps=25,
|
| 218 |
+
randomize_seed=True,
|
| 219 |
+
use_resolution_binning=True,
|
| 220 |
+
num_images=1,
|
| 221 |
+
)
|
| 222 |
+
# Yield the generated image so that the chat interface displays it.
|
| 223 |
+
yield gr.Image(image_paths[0])
|
| 224 |
+
return # Exit early
|
| 225 |
|
| 226 |
+
# ----------------------------
|
| 227 |
+
# TTS Branch (if query starts with @tts)
|
| 228 |
+
# ----------------------------
|
| 229 |
tts_prefix = "@tts"
|
| 230 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
| 231 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
|
| 233 |
if is_tts and voice_index:
|
| 234 |
voice = TTS_VOICES[voice_index - 1]
|
| 235 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
| 236 |
+
# Clear previous chat history for a fresh TTS request.
|
| 237 |
conversation = [{"role": "user", "content": text}]
|
| 238 |
else:
|
| 239 |
voice = None
|
| 240 |
+
# Remove any stray @tts tags and build the conversation history.
|
| 241 |
text = text.replace(tts_prefix, "").strip()
|
| 242 |
conversation = clean_chat_history(chat_history)
|
| 243 |
conversation.append({"role": "user", "content": text})
|
| 244 |
|
| 245 |
+
# ----------------------------
|
| 246 |
+
# Multimodal (image + text) branch
|
| 247 |
+
# ----------------------------
|
| 248 |
+
if files:
|
| 249 |
+
if len(files) > 1:
|
| 250 |
+
images = [load_image(image) for image in files]
|
| 251 |
+
elif len(files) == 1:
|
| 252 |
+
images = [load_image(files[0])]
|
| 253 |
+
else:
|
| 254 |
+
images = []
|
| 255 |
messages = [{
|
| 256 |
"role": "user",
|
| 257 |
"content": [
|
|
|
|
| 274 |
time.sleep(0.01)
|
| 275 |
yield buffer
|
| 276 |
else:
|
| 277 |
+
# ----------------------------
|
| 278 |
+
# Text-only branch
|
| 279 |
+
# ----------------------------
|
| 280 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 281 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 282 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
|
| 305 |
final_response = "".join(outputs)
|
| 306 |
yield final_response
|
| 307 |
|
| 308 |
+
# If TTS was requested, convert the final response to speech.
|
| 309 |
if is_tts and voice:
|
| 310 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 311 |
yield gr.Audio(output_file, autoplay=True)
|
| 312 |
|
| 313 |
+
# ============================================
|
| 314 |
+
# GRADIO DEMO SETUP
|
| 315 |
+
# ============================================
|
| 316 |
+
|
| 317 |
demo = gr.ChatInterface(
|
| 318 |
fn=generate,
|
| 319 |
additional_inputs=[
|
|
|
|
| 330 |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
|
| 331 |
["Write a Python function to check if a number is prime."],
|
| 332 |
["@tts2 What causes rainbows to form?"],
|
| 333 |
+
["@image A futuristic city skyline at dusk"],
|
| 334 |
],
|
| 335 |
cache_examples=False,
|
| 336 |
type="messages",
|