Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,48 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
from threading import Thread
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
import torch
|
| 6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 7 |
-
from transformers.image_utils import load_image
|
| 8 |
import edge_tts
|
| 9 |
import asyncio
|
| 10 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
TTS_VOICES = [
|
| 23 |
"en-US-JennyNeural", # @tts1
|
|
@@ -30,7 +55,14 @@ TTS_VOICES = [
|
|
| 30 |
"en-US-TonyNeural", # @tts8
|
| 31 |
]
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 35 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
| 36 |
communicate = edge_tts.Communicate(text, voice)
|
|
@@ -39,25 +71,27 @@ async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
|
| 39 |
|
| 40 |
@spaces.GPU
|
| 41 |
def generate(
|
| 42 |
-
input_dict,
|
| 43 |
-
|
| 44 |
-
max_new_tokens: int = 1024,
|
| 45 |
-
temperature: float = 0.6,
|
| 46 |
-
top_p: float = 0.9,
|
| 47 |
-
top_k: int = 50,
|
| 48 |
-
repetition_penalty: float = 1.2
|
| 49 |
):
|
| 50 |
-
"""Generates chatbot response and handles TTS requests with multimodal support"""
|
| 51 |
-
text = input_dict
|
| 52 |
files = input_dict.get("files", [])
|
| 53 |
-
|
| 54 |
-
#
|
| 55 |
-
if files:
|
| 56 |
images = [load_image(image) for image in files]
|
|
|
|
|
|
|
| 57 |
else:
|
| 58 |
images = []
|
| 59 |
-
|
| 60 |
-
# Check if
|
| 61 |
tts_prefix = "@tts"
|
| 62 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 9))
|
| 63 |
voice_index = next((i for i in range(1, 9) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
@@ -69,29 +103,36 @@ def generate(
|
|
| 69 |
voice = None
|
| 70 |
text = text.replace(tts_prefix, "").strip()
|
| 71 |
|
| 72 |
-
|
|
|
|
| 73 |
if images:
|
| 74 |
-
#
|
| 75 |
messages = [
|
| 76 |
-
{
|
| 77 |
-
"
|
| 78 |
-
"
|
| 79 |
-
|
| 80 |
-
{"type": "text", "text": text},
|
| 81 |
-
],
|
| 82 |
-
}
|
| 83 |
]
|
| 84 |
-
prompt =
|
| 85 |
-
inputs =
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
else:
|
| 93 |
-
#
|
| 94 |
-
conversation = [*history, {"role": "user", "content": text}]
|
| 95 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 96 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 97 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
@@ -110,38 +151,32 @@ def generate(
|
|
| 110 |
num_beams=1,
|
| 111 |
repetition_penalty=repetition_penalty,
|
| 112 |
)
|
| 113 |
-
|
| 114 |
-
# Start generation in a separate thread
|
| 115 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 116 |
t.start()
|
| 117 |
|
| 118 |
-
# Collect generated text
|
| 119 |
outputs = []
|
| 120 |
for text in streamer:
|
| 121 |
outputs.append(text)
|
| 122 |
yield "".join(outputs)
|
|
|
|
| 123 |
final_response = "".join(outputs)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
yield final_response # Return text response
|
| 131 |
|
| 132 |
-
|
| 133 |
-
demo = gr.
|
| 134 |
fn=generate,
|
| 135 |
-
|
| 136 |
-
gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), # Multimodal input
|
| 137 |
-
gr.Textbox(label="Chat History", value="", placeholder="Previous conversation history"),
|
| 138 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 139 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 140 |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 141 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 142 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 143 |
],
|
| 144 |
-
outputs=["text", "audio"],
|
| 145 |
examples=[
|
| 146 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
| 147 |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
|
|
@@ -150,11 +185,15 @@ demo = gr.Interface(
|
|
| 150 |
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
|
| 151 |
["@tts5 What is the capital of France?"],
|
| 152 |
],
|
| 153 |
-
|
| 154 |
-
|
|
|
|
| 155 |
css=css,
|
| 156 |
fill_height=True,
|
|
|
|
|
|
|
|
|
|
| 157 |
)
|
| 158 |
|
| 159 |
if __name__ == "__main__":
|
| 160 |
-
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
from collections.abc import Iterator
|
| 3 |
from threading import Thread
|
| 4 |
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
import torch
|
|
|
|
|
|
|
| 7 |
import edge_tts
|
| 8 |
import asyncio
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 10 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
| 11 |
+
from transformers.image_utils import load_image
|
| 12 |
+
import time
|
| 13 |
+
|
| 14 |
+
DESCRIPTION = """
|
| 15 |
+
# QwQ Edge 💬
|
| 16 |
+
"""
|
| 17 |
|
| 18 |
+
css = '''
|
| 19 |
+
h1 {
|
| 20 |
+
text-align: center;
|
| 21 |
+
display: block;
|
| 22 |
+
}
|
| 23 |
|
| 24 |
+
#duplicate-button {
|
| 25 |
+
margin: auto;
|
| 26 |
+
color: #fff;
|
| 27 |
+
background: #1565c0;
|
| 28 |
+
border-radius: 100vh;
|
| 29 |
+
}
|
| 30 |
+
'''
|
| 31 |
+
|
| 32 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 33 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 34 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 35 |
+
|
| 36 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 37 |
+
|
| 38 |
+
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
model_id,
|
| 42 |
+
device_map="auto",
|
| 43 |
+
torch_dtype=torch.bfloat16,
|
| 44 |
+
)
|
| 45 |
+
model.eval()
|
| 46 |
|
| 47 |
TTS_VOICES = [
|
| 48 |
"en-US-JennyNeural", # @tts1
|
|
|
|
| 55 |
"en-US-TonyNeural", # @tts8
|
| 56 |
]
|
| 57 |
|
| 58 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 59 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 60 |
+
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 61 |
+
MODEL_ID,
|
| 62 |
+
trust_remote_code=True,
|
| 63 |
+
torch_dtype=torch.float16
|
| 64 |
+
).to("auto").eval()
|
| 65 |
+
|
| 66 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
| 67 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
| 68 |
communicate = edge_tts.Communicate(text, voice)
|
|
|
|
| 71 |
|
| 72 |
@spaces.GPU
|
| 73 |
def generate(
|
| 74 |
+
input_dict: dict,
|
| 75 |
+
chat_history: list[dict],
|
| 76 |
+
max_new_tokens: int = 1024,
|
| 77 |
+
temperature: float = 0.6,
|
| 78 |
+
top_p: float = 0.9,
|
| 79 |
+
top_k: int = 50,
|
| 80 |
+
repetition_penalty: float = 1.2,
|
| 81 |
):
|
| 82 |
+
"""Generates chatbot response and handles TTS requests with multimodal input support"""
|
| 83 |
+
text = input_dict["text"]
|
| 84 |
files = input_dict.get("files", [])
|
| 85 |
+
|
| 86 |
+
# Check if input includes image(s)
|
| 87 |
+
if len(files) > 1:
|
| 88 |
images = [load_image(image) for image in files]
|
| 89 |
+
elif len(files) == 1:
|
| 90 |
+
images = [load_image(files[0])]
|
| 91 |
else:
|
| 92 |
images = []
|
| 93 |
+
|
| 94 |
+
# Check if message is for TTS
|
| 95 |
tts_prefix = "@tts"
|
| 96 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 9))
|
| 97 |
voice_index = next((i for i in range(1, 9) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
|
| 103 |
voice = None
|
| 104 |
text = text.replace(tts_prefix, "").strip()
|
| 105 |
|
| 106 |
+
conversation = [*chat_history, {"role": "user", "content": text}]
|
| 107 |
+
|
| 108 |
if images:
|
| 109 |
+
# Process multimodal input
|
| 110 |
messages = [
|
| 111 |
+
{"role": "user", "content": [
|
| 112 |
+
*[{"type": "image", "image": image} for image in images],
|
| 113 |
+
{"type": "text", "text": text},
|
| 114 |
+
]}
|
|
|
|
|
|
|
|
|
|
| 115 |
]
|
| 116 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 117 |
+
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
| 118 |
+
|
| 119 |
+
# Handle generation for multimodal input
|
| 120 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 121 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
| 122 |
+
|
| 123 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
| 124 |
+
thread.start()
|
| 125 |
+
|
| 126 |
+
buffer = ""
|
| 127 |
+
yield "Thinking..."
|
| 128 |
+
for new_text in streamer:
|
| 129 |
+
buffer += new_text
|
| 130 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 131 |
+
time.sleep(0.01)
|
| 132 |
+
yield buffer
|
| 133 |
|
| 134 |
else:
|
| 135 |
+
# Process text-only input
|
|
|
|
| 136 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
| 137 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
| 138 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
|
| 151 |
num_beams=1,
|
| 152 |
repetition_penalty=repetition_penalty,
|
| 153 |
)
|
|
|
|
|
|
|
| 154 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 155 |
t.start()
|
| 156 |
|
|
|
|
| 157 |
outputs = []
|
| 158 |
for text in streamer:
|
| 159 |
outputs.append(text)
|
| 160 |
yield "".join(outputs)
|
| 161 |
+
|
| 162 |
final_response = "".join(outputs)
|
| 163 |
|
| 164 |
+
if is_tts and voice:
|
| 165 |
+
output_file = asyncio.run(text_to_speech(final_response, voice))
|
| 166 |
+
yield gr.Audio(output_file, autoplay=True) # Return playable audio
|
| 167 |
+
else:
|
| 168 |
+
yield final_response # Return text response
|
|
|
|
| 169 |
|
| 170 |
+
|
| 171 |
+
demo = gr.ChatInterface(
|
| 172 |
fn=generate,
|
| 173 |
+
additional_inputs=[
|
|
|
|
|
|
|
| 174 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
| 175 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
| 176 |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
| 177 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
| 178 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
| 179 |
],
|
|
|
|
| 180 |
examples=[
|
| 181 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
| 182 |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
|
|
|
|
| 185 |
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
|
| 186 |
["@tts5 What is the capital of France?"],
|
| 187 |
],
|
| 188 |
+
cache_examples=False,
|
| 189 |
+
type="messages",
|
| 190 |
+
description=DESCRIPTION,
|
| 191 |
css=css,
|
| 192 |
fill_height=True,
|
| 193 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
| 194 |
+
stop_btn="Stop Generation",
|
| 195 |
+
multimodal=True,
|
| 196 |
)
|
| 197 |
|
| 198 |
if __name__ == "__main__":
|
| 199 |
+
demo.queue(max_size=20).launch()
|