Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import AutoencoderKL, TCDScheduler | |
from diffusers.models.model_loading_utils import load_state_dict | |
from huggingface_hub import hf_hub_download | |
from controlnet_union import ControlNetModel_Union | |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
from PIL import Image, ImageDraw | |
import numpy as np | |
# --- Configuration and Model Loading --- | |
# Load ControlNet Union | |
config_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="config_promax.json", | |
) | |
config = ControlNetModel_Union.load_config(config_file) | |
controlnet_model = ControlNetModel_Union.from_config(config) | |
model_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="diffusion_pytorch_model_promax.safetensors", | |
) | |
sstate_dict = load_state_dict(model_file) | |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
) | |
model.to(device="cuda", dtype=torch.float16) | |
# Load VAE | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
).to("cuda") | |
# --- Load Multiple Pipelines --- | |
pipelines = {} | |
# Load RealVisXL V5.0 Lightning | |
pipe_v5 = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, # Use the same controlnet | |
variant="fp16", | |
).to("cuda") | |
pipe_v5.scheduler = TCDScheduler.from_config(pipe_v5.scheduler.config) | |
pipelines["RealVisXL V5.0 Lightning"] = pipe_v5 | |
# Load RealVisXL V4.0 Lightning | |
pipe_v4 = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, # Use the same VAE | |
controlnet=model, # Use the same controlnet | |
variant="fp16", | |
).to("cuda") | |
pipe_v4.scheduler = TCDScheduler.from_config(pipe_v4.scheduler.config) | |
pipelines["RealVisXL V4.0 Lightning"] = pipe_v4 | |
# --- Helper Functions --- | |
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
target_size = (width, height) | |
# Calculate the scaling factor to fit the image within the target size | |
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) | |
new_width = int(image.width * scale_factor) | |
new_height = int(image.height * scale_factor) | |
# Resize the source image to fit within target size | |
source = image.resize((new_width, new_height), Image.LANCZOS) | |
# Apply resize option using percentages | |
if resize_option == "Full": | |
resize_percentage = 100 | |
elif resize_option == "50%": | |
resize_percentage = 50 | |
elif resize_option == "33%": | |
resize_percentage = 33 | |
elif resize_option == "25%": | |
resize_percentage = 25 | |
else: # Custom | |
resize_percentage = custom_resize_percentage | |
# Calculate new dimensions based on percentage | |
resize_factor = resize_percentage / 100 | |
new_width = int(source.width * resize_factor) | |
new_height = int(source.height * resize_factor) | |
# Ensure minimum size of 64 pixels | |
new_width = max(new_width, 64) | |
new_height = max(new_height, 64) | |
# Resize the image | |
source = source.resize((new_width, new_height), Image.LANCZOS) | |
# Calculate the overlap in pixels based on the percentage | |
overlap_x = int(new_width * (overlap_percentage / 100)) | |
overlap_y = int(new_height * (overlap_percentage / 100)) | |
# Ensure minimum overlap of 1 pixel | |
overlap_x = max(overlap_x, 1) | |
overlap_y = max(overlap_y, 1) | |
# Calculate margins based on alignment | |
if alignment == "Middle": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Left": | |
margin_x = 0 | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Right": | |
margin_x = target_size[0] - new_width | |
margin_y = (target_size[1] - new_height) // 2 | |
elif alignment == "Top": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = 0 | |
elif alignment == "Bottom": | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = target_size[1] - new_height | |
else: # Default to Middle if alignment is somehow invalid | |
margin_x = (target_size[0] - new_width) // 2 | |
margin_y = (target_size[1] - new_height) // 2 | |
# Adjust margins to eliminate gaps | |
margin_x = max(0, min(margin_x, target_size[0] - new_width)) | |
margin_y = max(0, min(margin_y, target_size[1] - new_height)) | |
# Create a new background image and paste the resized source image | |
background = Image.new('RGB', target_size, (255, 255, 255)) | |
background.paste(source, (margin_x, margin_y)) | |
# Create the mask | |
mask = Image.new('L', target_size, 255) # White background (area to be filled) | |
mask_draw = ImageDraw.Draw(mask) | |
# Calculate overlap areas (where the mask should be black = keep original) | |
white_gaps_patch = 2 # Small value to ensure no tiny gaps at edges if overlap is off | |
# Determine the coordinates for the black rectangle (the non-masked area) | |
# Start with the full area covered by the pasted image | |
left_black = margin_x | |
top_black = margin_y | |
right_black = margin_x + new_width | |
bottom_black = margin_y + new_height | |
# Adjust the black area based on overlap checkboxes | |
if overlap_left: | |
left_black += overlap_x | |
else: | |
# If not overlapping left, ensure the black mask starts exactly at the image edge or slightly inside | |
left_black += white_gaps_patch if alignment != "Left" else 0 | |
if overlap_right: | |
right_black -= overlap_x | |
else: | |
# If not overlapping right, ensure the black mask ends exactly at the image edge or slightly inside | |
right_black -= white_gaps_patch if alignment != "Right" else 0 | |
if overlap_top: | |
top_black += overlap_y | |
else: | |
# If not overlapping top, ensure the black mask starts exactly at the image edge or slightly inside | |
top_black += white_gaps_patch if alignment != "Top" else 0 | |
if overlap_bottom: | |
bottom_black -= overlap_y | |
else: | |
# If not overlapping bottom, ensure the black mask ends exactly at the image edge or slightly inside | |
bottom_black -= white_gaps_patch if alignment != "Bottom" else 0 | |
# Ensure coordinates are valid (left < right, top < bottom) | |
left_black = min(left_black, target_size[0]) | |
top_black = min(top_black, target_size[1]) | |
right_black = max(left_black, right_black) # Ensure right >= left | |
bottom_black = max(top_black, bottom_black) # Ensure bottom >= top | |
right_black = min(right_black, target_size[0]) | |
bottom_black = min(bottom_black, target_size[1]) | |
# Draw the black rectangle onto the white mask | |
# The area *inside* this rectangle will be kept (mask value 0) | |
# The area *outside* this rectangle will be filled (mask value 255) | |
if right_black > left_black and bottom_black > top_black: | |
mask_draw.rectangle( | |
[(left_black, top_black), (right_black, bottom_black)], | |
fill=0 # Black means keep this area | |
) | |
return background, mask | |
def infer(selected_model_name, image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
if image is None: | |
raise gr.Error("Please upload an input image.") | |
try: | |
# Select the pipeline based on the dropdown choice | |
pipe = pipelines[selected_model_name] | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
# Create the controlnet input image (original image pasted on white bg, with masked area blacked out) | |
cnet_image = background.copy() | |
# Create a black image of the same size as the mask | |
black_fill = Image.new('RGB', mask.size, (0, 0, 0)) | |
# Paste the black fill using the mask (where mask is 255/white, paste black) | |
cnet_image.paste(black_fill, (0, 0), mask) | |
final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k" | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(final_prompt, "cuda", True) | |
# Generate the image | |
generator = torch.Generator(device="cuda").manual_seed(np.random.randint(0, 2**32)) # Add random seed | |
# The pipeline expects the 'image' argument to be the background with the original content | |
# and the 'mask_image' argument to define the area to *inpaint* (white area in our mask) | |
result_image = pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=background, # The background containing the original image | |
mask_image=mask, # The mask (white = fill, black = keep) | |
control_image=cnet_image, # ControlNet input image | |
num_inference_steps=num_inference_steps, | |
generator=generator, # Use generator for reproducibility if needed | |
output_type="pil" # Ensure PIL output | |
).images[0] | |
# The pipeline directly returns the final composited image. | |
# No need for manual pasting like before. | |
return result_image | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
import traceback | |
traceback.print_exc() | |
# Return the background image or raise a Gradio error for clarity | |
# raise gr.Error(f"Inference failed: {e}") | |
# Or return the prepared background/mask for debugging | |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
# Combine background and mask for visualization | |
debug_img = Image.blend(background.convert("RGBA"), mask.convert("RGBA"), 0.5) | |
return debug_img # Return a debug image or None | |
def clear_result(): | |
"""Clears the result Image.""" | |
return gr.update(value=None) | |
def preload_presets(target_ratio, ui_width, ui_height): | |
"""Updates the width and height sliders based on the selected aspect ratio.""" | |
if target_ratio == "9:16": | |
changed_width = 720 | |
changed_height = 1280 | |
return changed_width, changed_height, gr.update(open=False) # Close accordion on preset | |
elif target_ratio == "16:9": | |
changed_width = 1280 | |
changed_height = 720 | |
return changed_width, changed_height, gr.update(open=False) # Close accordion on preset | |
elif target_ratio == "1:1": | |
changed_width = 1024 | |
changed_height = 1024 | |
return changed_width, changed_height, gr.update(open=False) # Close accordion on preset | |
elif target_ratio == "Custom": | |
# When switching to Custom, keep current slider values but open accordion | |
return ui_width, ui_height, gr.update(open=True) | |
# Should not happen, but return current values if it does | |
return ui_width, ui_height, gr.update() | |
def select_the_right_preset(user_width, user_height): | |
if user_width == 720 and user_height == 1280: | |
return "9:16" | |
elif user_width == 1280 and user_height == 720: | |
return "16:9" | |
elif user_width == 1024 and user_height == 1024: | |
return "1:1" | |
else: | |
return "Custom" | |
def toggle_custom_resize_slider(resize_option): | |
return gr.update(visible=(resize_option == "Custom")) | |
def update_history(new_image, history): | |
"""Updates the history gallery with the new image.""" | |
if new_image is None: # Don't add None to history (e.g., on clear or error) | |
return history | |
if history is None: | |
history = [] | |
# Prepend the new image (as PIL or path depending on Gallery config) | |
history.insert(0, new_image) | |
# Limit history size if desired (e.g., keep last 12) | |
max_history = 12 | |
if len(history) > max_history: | |
history = history[:max_history] | |
return history | |
# --- CSS and Title --- | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
.gradio-container { | |
max-width: 1280px !important; | |
margin: auto !important; | |
} | |
""" | |
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1> | |
<p align="center">Expand images using ControlNet Union and Lightning models. Choose a base model below.</p> | |
""" | |
# --- Gradio UI --- | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
with gr.Column(): | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(scale=2): # Input column | |
input_image = gr.Image( | |
type="pil", | |
label="Input Image" | |
) | |
# --- Model Selector --- | |
model_selector = gr.Dropdown( | |
label="Select Model", | |
choices=list(pipelines.keys()), | |
value="RealVisXL V5.0 Lightning", # Default model | |
) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
prompt_input = gr.Textbox(label="Prompt (Describe the desired output)", placeholder="e.g., beautiful landscape, photorealistic") | |
with gr.Column(scale=1, min_width=120): | |
run_button = gr.Button("Generate", variant="primary") | |
with gr.Row(): | |
target_ratio = gr.Radio( | |
label="Target Ratio", | |
choices=["9:16", "16:9", "1:1", "Custom"], | |
value="9:16", # Default ratio | |
scale=2 | |
) | |
alignment_dropdown = gr.Dropdown( | |
choices=["Middle", "Left", "Right", "Top", "Bottom"], | |
value="Middle", | |
label="Align Input Image" | |
) | |
with gr.Accordion(label="Advanced settings", open=False) as settings_panel: | |
with gr.Column(): | |
with gr.Row(): | |
width_slider = gr.Slider( | |
label="Target Width", | |
minimum=512, # Lowered minimum slightly | |
maximum=1536, | |
step=64, # Steps of 64 common for SDXL | |
value=720, # Default width | |
) | |
height_slider = gr.Slider( | |
label="Target Height", | |
minimum=512, # Lowered minimum slightly | |
maximum=1536, | |
step=64, # Steps of 64 | |
value=1280, # Default height | |
) | |
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) | |
with gr.Group(): | |
overlap_percentage = gr.Slider( | |
label="Mask overlap (%)", | |
info="Percentage of the input image edge to keep (reduces seams)", | |
minimum=1, | |
maximum=50, | |
value=10, # Default overlap | |
step=1 | |
) | |
gr.Markdown("Select edges to apply overlap:") | |
with gr.Row(): | |
overlap_top = gr.Checkbox(label="Top", value=True) | |
overlap_right = gr.Checkbox(label="Right", value=True) | |
overlap_left = gr.Checkbox(label="Left", value=True) | |
overlap_bottom = gr.Checkbox(label="Bottom", value=True) | |
with gr.Row(): | |
resize_option = gr.Radio( | |
label="Resize input image before placing", | |
info="Scale the input image relative to its fitted size", | |
choices=["Full", "50%", "33%", "25%", "Custom"], | |
value="Full" # Default resize option | |
) | |
custom_resize_percentage = gr.Slider( | |
label="Custom resize (%)", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
visible=False # Initially hidden | |
) | |
gr.Examples( | |
examples=[ | |
["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720, "Middle"], | |
["./examples/example_2.jpg", "RealVisXL V4.0 Lightning", 1440, 810, "Left"], | |
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024, "Top"], | |
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024, "Bottom"], | |
], | |
inputs=[input_image, model_selector, width_slider, height_slider, alignment_dropdown], | |
label="Examples (Prompt is optional)" | |
) | |
with gr.Column(scale=3): # Output column | |
result = gr.Image( | |
interactive=False, | |
label="Generated Image", | |
format="png", | |
) | |
history_gallery = gr.Gallery( | |
label="History", | |
columns=4, # Adjust columns as needed | |
object_fit="contain", | |
interactive=False, | |
show_label=True, | |
allow_preview=True, | |
preview=True | |
) | |
# --- Event Listeners --- | |
# Update sliders and accordion based on ratio selection | |
target_ratio.change( | |
fn=preload_presets, | |
inputs=[target_ratio, width_slider, height_slider], | |
outputs=[width_slider, height_slider, settings_panel], | |
queue=False | |
) | |
# Update ratio selection based on slider changes | |
width_slider.change( | |
fn=select_the_right_preset, | |
inputs=[width_slider, height_slider], | |
outputs=[target_ratio], | |
queue=False | |
) | |
height_slider.change( | |
fn=select_the_right_preset, | |
inputs=[width_slider, height_slider], | |
outputs=[target_ratio], | |
queue=False | |
) | |
# Show/hide custom resize slider | |
resize_option.change( | |
fn=toggle_custom_resize_slider, | |
inputs=[resize_option], | |
outputs=[custom_resize_percentage], | |
queue=False | |
) | |
# Define inputs for the main inference function | |
infer_inputs = [ | |
model_selector, input_image, width_slider, height_slider, overlap_percentage, | |
num_inference_steps, resize_option, custom_resize_percentage, prompt_input, | |
alignment_dropdown, overlap_left, overlap_right, overlap_top, overlap_bottom | |
] | |
# --- Run Button Click --- | |
run_button.click( | |
fn=clear_result, | |
inputs=None, | |
outputs=[result], # Clear only the main result image | |
queue=False # Clearing should be fast | |
).then( | |
fn=infer, | |
inputs=infer_inputs, | |
outputs=[result], # Output to the main result image | |
).then( | |
fn=update_history, # Use the specific update function | |
inputs=[result, history_gallery], # Pass the result and current history | |
outputs=[history_gallery], # Update the history gallery | |
) | |
# --- Prompt Submit (Enter Key) --- | |
prompt_input.submit( | |
fn=clear_result, | |
inputs=None, | |
outputs=[result], | |
queue=False | |
).then( | |
fn=infer, | |
inputs=infer_inputs, | |
outputs=[result], | |
).then( | |
fn=update_history, | |
inputs=[result, history_gallery], | |
outputs=[history_gallery], | |
) | |
# --- Launch App --- | |
# Make sure you have example images at the specified paths or remove/update the gr.Examples section | |
# Create an 'examples' directory and place images like 'example_1.webp', 'example_2.jpg', 'example_3.jpg' inside it. | |
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True) |