File size: 20,930 Bytes
a85c4cf
 
 
f5e2b63
04cce22
11d7c13
f5e2b63
e01e01c
 
04cce22
f5e2b63
a85c4cf
4074d29
d4884bc
 
 
e01e01c
 
 
 
 
 
 
 
 
 
a5ce6db
e01e01c
a5ce6db
e01e01c
 
 
d4884bc
e01e01c
 
 
 
d4884bc
7bc6034
d4884bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e01e01c
04cce22
e01e01c
 
 
 
 
 
d4884bc
e01e01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4884bc
 
 
 
e01e01c
 
 
 
 
 
 
 
 
 
d4884bc
e01e01c
 
d4884bc
 
e01e01c
d4884bc
 
 
 
 
 
 
 
 
 
 
 
 
e01e01c
d4884bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e01e01c
 
04cce22
d4884bc
1124bc4
d4884bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e01e01c
 
a5ce6db
e01e01c
 
04cce22
 
 
 
 
d4884bc
04cce22
 
 
d4884bc
04cce22
 
 
d4884bc
04cce22
d4884bc
e01e01c
d4884bc
 
 
04cce22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4884bc
 
04cce22
 
d4884bc
4074d29
d4884bc
 
 
 
11d7c13
f5e2b63
d4884bc
04cce22
4a9305f
d4884bc
 
 
 
 
 
76bb293
22ef061
108256c
a5ce6db
d4884bc
e01e01c
03b41ea
d4884bc
76bb293
e01e01c
 
108256c
e01e01c
d4884bc
e01e01c
 
 
108256c
 
d4884bc
 
7bc6034
 
d4884bc
7bc6034
d4884bc
108256c
e01e01c
d4884bc
 
 
108256c
4074d29
e01e01c
d4884bc
e01e01c
d4884bc
e01e01c
4074d29
d4884bc
e01e01c
 
 
d4884bc
4074d29
ce44242
e01e01c
 
 
 
a5ce6db
d4884bc
a5ce6db
d4884bc
 
e01e01c
 
a5ce6db
d4884bc
a5ce6db
d4884bc
 
e01e01c
d4884bc
a5ce6db
d4884bc
e01e01c
 
 
d4884bc
e01e01c
 
d4884bc
a5ce6db
e01e01c
d4884bc
e01e01c
d4884bc
 
 
 
 
e01e01c
 
d4884bc
 
e01e01c
d4884bc
e01e01c
 
 
 
 
 
 
d4884bc
e01e01c
d4884bc
108256c
e01e01c
d4884bc
 
 
 
e01e01c
d4884bc
 
e01e01c
108256c
d4884bc
b4cb811
 
 
edc9e87
b4cb811
d4884bc
 
 
 
 
 
 
 
 
e9f69e7
d4884bc
 
 
 
70cf16f
 
 
 
 
 
 
d4884bc
70cf16f
 
 
 
 
 
 
 
 
 
 
 
 
d4884bc
70cf16f
 
 
 
 
 
d4884bc
 
 
 
 
 
 
 
 
1cbdebf
70cf16f
 
d4884bc
 
70cf16f
 
d4884bc
 
70cf16f
d4884bc
 
 
70cf16f
 
d4884bc
70cf16f
d4884bc
70cf16f
d4884bc
 
70cf16f
 
d4884bc
 
70cf16f
d4884bc
70cf16f
d4884bc
70cf16f
 
d4884bc
 
 
a5ce6db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np

# --- Configuration and Model Loading ---

# Load ControlNet Union
config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
sstate_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

# Load VAE
vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

# --- Load Multiple Pipelines ---
pipelines = {}

# Load RealVisXL V5.0 Lightning
pipe_v5 = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model, # Use the same controlnet
    variant="fp16",
).to("cuda")
pipe_v5.scheduler = TCDScheduler.from_config(pipe_v5.scheduler.config)
pipelines["RealVisXL V5.0 Lightning"] = pipe_v5

# Load RealVisXL V4.0 Lightning
pipe_v4 = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V4.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae, # Use the same VAE
    controlnet=model, # Use the same controlnet
    variant="fp16",
).to("cuda")
pipe_v4.scheduler = TCDScheduler.from_config(pipe_v4.scheduler.config)
pipelines["RealVisXL V4.0 Lightning"] = pipe_v4

# --- Helper Functions ---

def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    target_size = (width, height)

    # Calculate the scaling factor to fit the image within the target size
    scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
    new_width = int(image.width * scale_factor)
    new_height = int(image.height * scale_factor)

    # Resize the source image to fit within target size
    source = image.resize((new_width, new_height), Image.LANCZOS)

    # Apply resize option using percentages
    if resize_option == "Full":
        resize_percentage = 100
    elif resize_option == "50%":
        resize_percentage = 50
    elif resize_option == "33%":
        resize_percentage = 33
    elif resize_option == "25%":
        resize_percentage = 25
    else:  # Custom
        resize_percentage = custom_resize_percentage

    # Calculate new dimensions based on percentage
    resize_factor = resize_percentage / 100
    new_width = int(source.width * resize_factor)
    new_height = int(source.height * resize_factor)

    # Ensure minimum size of 64 pixels
    new_width = max(new_width, 64)
    new_height = max(new_height, 64)

    # Resize the image
    source = source.resize((new_width, new_height), Image.LANCZOS)

    # Calculate the overlap in pixels based on the percentage
    overlap_x = int(new_width * (overlap_percentage / 100))
    overlap_y = int(new_height * (overlap_percentage / 100))

    # Ensure minimum overlap of 1 pixel
    overlap_x = max(overlap_x, 1)
    overlap_y = max(overlap_y, 1)

    # Calculate margins based on alignment
    if alignment == "Middle":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Right":
        margin_x = target_size[0] - new_width
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Top":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = target_size[1] - new_height
    else: # Default to Middle if alignment is somehow invalid
        margin_x = (target_size[0] - new_width) // 2
        margin_y = (target_size[1] - new_height) // 2


    # Adjust margins to eliminate gaps
    margin_x = max(0, min(margin_x, target_size[0] - new_width))
    margin_y = max(0, min(margin_y, target_size[1] - new_height))

    # Create a new background image and paste the resized source image
    background = Image.new('RGB', target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    # Create the mask
    mask = Image.new('L', target_size, 255) # White background (area to be filled)
    mask_draw = ImageDraw.Draw(mask)

    # Calculate overlap areas (where the mask should be black = keep original)
    white_gaps_patch = 2 # Small value to ensure no tiny gaps at edges if overlap is off

    # Determine the coordinates for the black rectangle (the non-masked area)
    # Start with the full area covered by the pasted image
    left_black = margin_x
    top_black = margin_y
    right_black = margin_x + new_width
    bottom_black = margin_y + new_height

    # Adjust the black area based on overlap checkboxes
    if overlap_left:
        left_black += overlap_x
    else:
        # If not overlapping left, ensure the black mask starts exactly at the image edge or slightly inside
        left_black += white_gaps_patch if alignment != "Left" else 0

    if overlap_right:
        right_black -= overlap_x
    else:
         # If not overlapping right, ensure the black mask ends exactly at the image edge or slightly inside
        right_black -= white_gaps_patch if alignment != "Right" else 0

    if overlap_top:
        top_black += overlap_y
    else:
        # If not overlapping top, ensure the black mask starts exactly at the image edge or slightly inside
        top_black += white_gaps_patch if alignment != "Top" else 0

    if overlap_bottom:
        bottom_black -= overlap_y
    else:
        # If not overlapping bottom, ensure the black mask ends exactly at the image edge or slightly inside
        bottom_black -= white_gaps_patch if alignment != "Bottom" else 0

    # Ensure coordinates are valid (left < right, top < bottom)
    left_black = min(left_black, target_size[0])
    top_black = min(top_black, target_size[1])
    right_black = max(left_black, right_black) # Ensure right >= left
    bottom_black = max(top_black, bottom_black) # Ensure bottom >= top
    right_black = min(right_black, target_size[0])
    bottom_black = min(bottom_black, target_size[1])


    # Draw the black rectangle onto the white mask
    # The area *inside* this rectangle will be kept (mask value 0)
    # The area *outside* this rectangle will be filled (mask value 255)
    if right_black > left_black and bottom_black > top_black:
         mask_draw.rectangle(
             [(left_black, top_black), (right_black, bottom_black)],
             fill=0 # Black means keep this area
         )

    return background, mask


@spaces.GPU(duration=24)
def infer(selected_model_name, image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
    if image is None:
        raise gr.Error("Please upload an input image.")
    try:
        # Select the pipeline based on the dropdown choice
        pipe = pipelines[selected_model_name]

        background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)

        # Create the controlnet input image (original image pasted on white bg, with masked area blacked out)
        cnet_image = background.copy()
        # Create a black image of the same size as the mask
        black_fill = Image.new('RGB', mask.size, (0, 0, 0))
        # Paste the black fill using the mask (where mask is 255/white, paste black)
        cnet_image.paste(black_fill, (0, 0), mask)


        final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = pipe.encode_prompt(final_prompt, "cuda", True)

        # Generate the image
        generator = torch.Generator(device="cuda").manual_seed(np.random.randint(0, 2**32)) # Add random seed

        # The pipeline expects the 'image' argument to be the background with the original content
        # and the 'mask_image' argument to define the area to *inpaint* (white area in our mask)
        result_image = pipe(
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            image=background, # The background containing the original image
            mask_image=mask, # The mask (white = fill, black = keep)
            control_image=cnet_image, # ControlNet input image
            num_inference_steps=num_inference_steps,
            generator=generator, # Use generator for reproducibility if needed
            output_type="pil" # Ensure PIL output
        ).images[0]

        # The pipeline directly returns the final composited image.
        # No need for manual pasting like before.

        return result_image
    except Exception as e:
        print(f"Error during inference: {e}")
        import traceback
        traceback.print_exc()
        # Return the background image or raise a Gradio error for clarity
        # raise gr.Error(f"Inference failed: {e}")
        # Or return the prepared background/mask for debugging
        background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
        # Combine background and mask for visualization
        debug_img = Image.blend(background.convert("RGBA"), mask.convert("RGBA"), 0.5)
        return debug_img # Return a debug image or None


def clear_result():
    """Clears the result Image."""
    return gr.update(value=None)

def preload_presets(target_ratio, ui_width, ui_height):
    """Updates the width and height sliders based on the selected aspect ratio."""
    if target_ratio == "9:16":
        changed_width = 720
        changed_height = 1280
        return changed_width, changed_height, gr.update(open=False) # Close accordion on preset
    elif target_ratio == "16:9":
        changed_width = 1280
        changed_height = 720
        return changed_width, changed_height, gr.update(open=False) # Close accordion on preset
    elif target_ratio == "1:1":
        changed_width = 1024
        changed_height = 1024
        return changed_width, changed_height, gr.update(open=False) # Close accordion on preset
    elif target_ratio == "Custom":
        # When switching to Custom, keep current slider values but open accordion
        return ui_width, ui_height, gr.update(open=True)
    # Should not happen, but return current values if it does
    return ui_width, ui_height, gr.update()


def select_the_right_preset(user_width, user_height):
    if user_width == 720 and user_height == 1280:
        return "9:16"
    elif user_width == 1280 and user_height == 720:
        return "16:9"
    elif user_width == 1024 and user_height == 1024:
        return "1:1"
    else:
        return "Custom"

def toggle_custom_resize_slider(resize_option):
    return gr.update(visible=(resize_option == "Custom"))

def update_history(new_image, history):
    """Updates the history gallery with the new image."""
    if new_image is None: # Don't add None to history (e.g., on clear or error)
        return history
    if history is None:
        history = []
    # Prepend the new image (as PIL or path depending on Gallery config)
    history.insert(0, new_image)
    # Limit history size if desired (e.g., keep last 12)
    max_history = 12
    if len(history) > max_history:
        history = history[:max_history]
    return history

# --- CSS and Title ---
css = """
h1 {
    text-align: center;
    display: block;
}
.gradio-container {
    max-width: 1280px !important;
    margin: auto !important;
}
"""

title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
<p align="center">Expand images using ControlNet Union and Lightning models. Choose a base model below.</p>
"""

# --- Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    with gr.Column():
        gr.HTML(title)

        with gr.Row():
            with gr.Column(scale=2): # Input column
                input_image = gr.Image(
                    type="pil",
                    label="Input Image"
                )

                # --- Model Selector ---
                model_selector = gr.Dropdown(
                    label="Select Model",
                    choices=list(pipelines.keys()),
                    value="RealVisXL V5.0 Lightning", # Default model
                )

                with gr.Row():
                    with gr.Column(scale=2):
                        prompt_input = gr.Textbox(label="Prompt (Describe the desired output)", placeholder="e.g., beautiful landscape, photorealistic")
                    with gr.Column(scale=1, min_width=120):
                        run_button = gr.Button("Generate", variant="primary")

                with gr.Row():
                    target_ratio = gr.Radio(
                        label="Target Ratio",
                        choices=["9:16", "16:9", "1:1", "Custom"],
                        value="9:16", # Default ratio
                        scale=2
                    )

                    alignment_dropdown = gr.Dropdown(
                        choices=["Middle", "Left", "Right", "Top", "Bottom"],
                        value="Middle",
                        label="Align Input Image"
                    )

                with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
                    with gr.Column():
                        with gr.Row():
                            width_slider = gr.Slider(
                                label="Target Width",
                                minimum=512, # Lowered minimum slightly
                                maximum=1536,
                                step=64, # Steps of 64 common for SDXL
                                value=720, # Default width
                            )
                            height_slider = gr.Slider(
                                label="Target Height",
                                minimum=512, # Lowered minimum slightly
                                maximum=1536,
                                step=64, # Steps of 64
                                value=1280, # Default height
                            )

                        num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)

                        with gr.Group():
                            overlap_percentage = gr.Slider(
                                label="Mask overlap (%)",
                                info="Percentage of the input image edge to keep (reduces seams)",
                                minimum=1,
                                maximum=50,
                                value=10, # Default overlap
                                step=1
                            )
                            gr.Markdown("Select edges to apply overlap:")
                            with gr.Row():
                                overlap_top = gr.Checkbox(label="Top", value=True)
                                overlap_right = gr.Checkbox(label="Right", value=True)
                                overlap_left = gr.Checkbox(label="Left", value=True)
                                overlap_bottom = gr.Checkbox(label="Bottom", value=True)

                        with gr.Row():
                            resize_option = gr.Radio(
                                label="Resize input image before placing",
                                info="Scale the input image relative to its fitted size",
                                choices=["Full", "50%", "33%", "25%", "Custom"],
                                value="Full" # Default resize option
                            )
                            custom_resize_percentage = gr.Slider(
                                label="Custom resize (%)",
                                minimum=1,
                                maximum=100,
                                step=1,
                                value=50,
                                visible=False # Initially hidden
                            )

                gr.Examples(
                    examples=[
                        ["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720, "Middle"],
                        ["./examples/example_2.jpg", "RealVisXL V4.0 Lightning", 1440, 810, "Left"],
                        ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024, "Top"],
                        ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024, "Bottom"],
                    ],
                    inputs=[input_image, model_selector, width_slider, height_slider, alignment_dropdown],
                    label="Examples (Prompt is optional)"
                )

            with gr.Column(scale=3): # Output column
                result = gr.Image(
                    interactive=False,
                    label="Generated Image",
                    format="png",
                )
                history_gallery = gr.Gallery(
                    label="History",
                    columns=4, # Adjust columns as needed
                    object_fit="contain",
                    interactive=False,
                    show_label=True,
                    allow_preview=True,
                    preview=True
                 )


    # --- Event Listeners ---

    # Update sliders and accordion based on ratio selection
    target_ratio.change(
        fn=preload_presets,
        inputs=[target_ratio, width_slider, height_slider],
        outputs=[width_slider, height_slider, settings_panel],
        queue=False
    )

    # Update ratio selection based on slider changes
    width_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )
    height_slider.change(
        fn=select_the_right_preset,
        inputs=[width_slider, height_slider],
        outputs=[target_ratio],
        queue=False
    )

    # Show/hide custom resize slider
    resize_option.change(
        fn=toggle_custom_resize_slider,
        inputs=[resize_option],
        outputs=[custom_resize_percentage],
        queue=False
    )

    # Define inputs for the main inference function
    infer_inputs = [
        model_selector, input_image, width_slider, height_slider, overlap_percentage,
        num_inference_steps, resize_option, custom_resize_percentage, prompt_input,
        alignment_dropdown, overlap_left, overlap_right, overlap_top, overlap_bottom
    ]

    # --- Run Button Click ---
    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=[result], # Clear only the main result image
        queue=False # Clearing should be fast
    ).then(
        fn=infer,
        inputs=infer_inputs,
        outputs=[result], # Output to the main result image
    ).then(
        fn=update_history, # Use the specific update function
        inputs=[result, history_gallery], # Pass the result and current history
        outputs=[history_gallery], # Update the history gallery
    )

    # --- Prompt Submit (Enter Key) ---
    prompt_input.submit(
         fn=clear_result,
        inputs=None,
        outputs=[result],
        queue=False
    ).then(
        fn=infer,
        inputs=infer_inputs,
        outputs=[result],
    ).then(
        fn=update_history,
        inputs=[result, history_gallery],
        outputs=[history_gallery],
    )

# --- Launch App ---
# Make sure you have example images at the specified paths or remove/update the gr.Examples section
# Create an 'examples' directory and place images like 'example_1.webp', 'example_2.jpg', 'example_3.jpg' inside it.
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True)