Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,930 Bytes
a85c4cf f5e2b63 04cce22 11d7c13 f5e2b63 e01e01c 04cce22 f5e2b63 a85c4cf 4074d29 d4884bc e01e01c a5ce6db e01e01c a5ce6db e01e01c d4884bc e01e01c d4884bc 7bc6034 d4884bc e01e01c 04cce22 e01e01c d4884bc e01e01c d4884bc e01e01c d4884bc e01e01c d4884bc e01e01c d4884bc e01e01c d4884bc e01e01c 04cce22 d4884bc 1124bc4 d4884bc e01e01c a5ce6db e01e01c 04cce22 d4884bc 04cce22 d4884bc 04cce22 d4884bc 04cce22 d4884bc e01e01c d4884bc 04cce22 d4884bc 04cce22 d4884bc 4074d29 d4884bc 11d7c13 f5e2b63 d4884bc 04cce22 4a9305f d4884bc 76bb293 22ef061 108256c a5ce6db d4884bc e01e01c 03b41ea d4884bc 76bb293 e01e01c 108256c e01e01c d4884bc e01e01c 108256c d4884bc 7bc6034 d4884bc 7bc6034 d4884bc 108256c e01e01c d4884bc 108256c 4074d29 e01e01c d4884bc e01e01c d4884bc e01e01c 4074d29 d4884bc e01e01c d4884bc 4074d29 ce44242 e01e01c a5ce6db d4884bc a5ce6db d4884bc e01e01c a5ce6db d4884bc a5ce6db d4884bc e01e01c d4884bc a5ce6db d4884bc e01e01c d4884bc e01e01c d4884bc a5ce6db e01e01c d4884bc e01e01c d4884bc e01e01c d4884bc e01e01c d4884bc e01e01c d4884bc e01e01c d4884bc 108256c e01e01c d4884bc e01e01c d4884bc e01e01c 108256c d4884bc b4cb811 edc9e87 b4cb811 d4884bc e9f69e7 d4884bc 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc 1cbdebf 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc 70cf16f d4884bc a5ce6db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
# --- Configuration and Model Loading ---
# Load ControlNet Union
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
sstate_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
# Load VAE
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
# --- Load Multiple Pipelines ---
pipelines = {}
# Load RealVisXL V5.0 Lightning
pipe_v5 = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model, # Use the same controlnet
variant="fp16",
).to("cuda")
pipe_v5.scheduler = TCDScheduler.from_config(pipe_v5.scheduler.config)
pipelines["RealVisXL V5.0 Lightning"] = pipe_v5
# Load RealVisXL V4.0 Lightning
pipe_v4 = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=torch.float16,
vae=vae, # Use the same VAE
controlnet=model, # Use the same controlnet
variant="fp16",
).to("cuda")
pipe_v4.scheduler = TCDScheduler.from_config(pipe_v4.scheduler.config)
pipelines["RealVisXL V4.0 Lightning"] = pipe_v4
# --- Helper Functions ---
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
else: # Custom
resize_percentage = custom_resize_percentage
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
else: # Default to Middle if alignment is somehow invalid
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new('L', target_size, 255) # White background (area to be filled)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas (where the mask should be black = keep original)
white_gaps_patch = 2 # Small value to ensure no tiny gaps at edges if overlap is off
# Determine the coordinates for the black rectangle (the non-masked area)
# Start with the full area covered by the pasted image
left_black = margin_x
top_black = margin_y
right_black = margin_x + new_width
bottom_black = margin_y + new_height
# Adjust the black area based on overlap checkboxes
if overlap_left:
left_black += overlap_x
else:
# If not overlapping left, ensure the black mask starts exactly at the image edge or slightly inside
left_black += white_gaps_patch if alignment != "Left" else 0
if overlap_right:
right_black -= overlap_x
else:
# If not overlapping right, ensure the black mask ends exactly at the image edge or slightly inside
right_black -= white_gaps_patch if alignment != "Right" else 0
if overlap_top:
top_black += overlap_y
else:
# If not overlapping top, ensure the black mask starts exactly at the image edge or slightly inside
top_black += white_gaps_patch if alignment != "Top" else 0
if overlap_bottom:
bottom_black -= overlap_y
else:
# If not overlapping bottom, ensure the black mask ends exactly at the image edge or slightly inside
bottom_black -= white_gaps_patch if alignment != "Bottom" else 0
# Ensure coordinates are valid (left < right, top < bottom)
left_black = min(left_black, target_size[0])
top_black = min(top_black, target_size[1])
right_black = max(left_black, right_black) # Ensure right >= left
bottom_black = max(top_black, bottom_black) # Ensure bottom >= top
right_black = min(right_black, target_size[0])
bottom_black = min(bottom_black, target_size[1])
# Draw the black rectangle onto the white mask
# The area *inside* this rectangle will be kept (mask value 0)
# The area *outside* this rectangle will be filled (mask value 255)
if right_black > left_black and bottom_black > top_black:
mask_draw.rectangle(
[(left_black, top_black), (right_black, bottom_black)],
fill=0 # Black means keep this area
)
return background, mask
@spaces.GPU(duration=24)
def infer(selected_model_name, image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
if image is None:
raise gr.Error("Please upload an input image.")
try:
# Select the pipeline based on the dropdown choice
pipe = pipelines[selected_model_name]
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Create the controlnet input image (original image pasted on white bg, with masked area blacked out)
cnet_image = background.copy()
# Create a black image of the same size as the mask
black_fill = Image.new('RGB', mask.size, (0, 0, 0))
# Paste the black fill using the mask (where mask is 255/white, paste black)
cnet_image.paste(black_fill, (0, 0), mask)
final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
# Generate the image
generator = torch.Generator(device="cuda").manual_seed(np.random.randint(0, 2**32)) # Add random seed
# The pipeline expects the 'image' argument to be the background with the original content
# and the 'mask_image' argument to define the area to *inpaint* (white area in our mask)
result_image = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=background, # The background containing the original image
mask_image=mask, # The mask (white = fill, black = keep)
control_image=cnet_image, # ControlNet input image
num_inference_steps=num_inference_steps,
generator=generator, # Use generator for reproducibility if needed
output_type="pil" # Ensure PIL output
).images[0]
# The pipeline directly returns the final composited image.
# No need for manual pasting like before.
return result_image
except Exception as e:
print(f"Error during inference: {e}")
import traceback
traceback.print_exc()
# Return the background image or raise a Gradio error for clarity
# raise gr.Error(f"Inference failed: {e}")
# Or return the prepared background/mask for debugging
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Combine background and mask for visualization
debug_img = Image.blend(background.convert("RGBA"), mask.convert("RGBA"), 0.5)
return debug_img # Return a debug image or None
def clear_result():
"""Clears the result Image."""
return gr.update(value=None)
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update(open=False) # Close accordion on preset
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update(open=False) # Close accordion on preset
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update(open=False) # Close accordion on preset
elif target_ratio == "Custom":
# When switching to Custom, keep current slider values but open accordion
return ui_width, ui_height, gr.update(open=True)
# Should not happen, but return current values if it does
return ui_width, ui_height, gr.update()
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if new_image is None: # Don't add None to history (e.g., on clear or error)
return history
if history is None:
history = []
# Prepend the new image (as PIL or path depending on Gallery config)
history.insert(0, new_image)
# Limit history size if desired (e.g., keep last 12)
max_history = 12
if len(history) > max_history:
history = history[:max_history]
return history
# --- CSS and Title ---
css = """
h1 {
text-align: center;
display: block;
}
.gradio-container {
max-width: 1280px !important;
margin: auto !important;
}
"""
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
<p align="center">Expand images using ControlNet Union and Lightning models. Choose a base model below.</p>
"""
# --- Gradio UI ---
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column(scale=2): # Input column
input_image = gr.Image(
type="pil",
label="Input Image"
)
# --- Model Selector ---
model_selector = gr.Dropdown(
label="Select Model",
choices=list(pipelines.keys()),
value="RealVisXL V5.0 Lightning", # Default model
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Describe the desired output)", placeholder="e.g., beautiful landscape, photorealistic")
with gr.Column(scale=1, min_width=120):
run_button = gr.Button("Generate", variant="primary")
with gr.Row():
target_ratio = gr.Radio(
label="Target Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16", # Default ratio
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Align Input Image"
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Target Width",
minimum=512, # Lowered minimum slightly
maximum=1536,
step=64, # Steps of 64 common for SDXL
value=720, # Default width
)
height_slider = gr.Slider(
label="Target Height",
minimum=512, # Lowered minimum slightly
maximum=1536,
step=64, # Steps of 64
value=1280, # Default height
)
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
info="Percentage of the input image edge to keep (reduces seams)",
minimum=1,
maximum=50,
value=10, # Default overlap
step=1
)
gr.Markdown("Select edges to apply overlap:")
with gr.Row():
overlap_top = gr.Checkbox(label="Top", value=True)
overlap_right = gr.Checkbox(label="Right", value=True)
overlap_left = gr.Checkbox(label="Left", value=True)
overlap_bottom = gr.Checkbox(label="Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image before placing",
info="Scale the input image relative to its fitted size",
choices=["Full", "50%", "33%", "25%", "Custom"],
value="Full" # Default resize option
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum=1,
maximum=100,
step=1,
value=50,
visible=False # Initially hidden
)
gr.Examples(
examples=[
["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720, "Middle"],
["./examples/example_2.jpg", "RealVisXL V4.0 Lightning", 1440, 810, "Left"],
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024, "Top"],
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024, "Bottom"],
],
inputs=[input_image, model_selector, width_slider, height_slider, alignment_dropdown],
label="Examples (Prompt is optional)"
)
with gr.Column(scale=3): # Output column
result = gr.Image(
interactive=False,
label="Generated Image",
format="png",
)
history_gallery = gr.Gallery(
label="History",
columns=4, # Adjust columns as needed
object_fit="contain",
interactive=False,
show_label=True,
allow_preview=True,
preview=True
)
# --- Event Listeners ---
# Update sliders and accordion based on ratio selection
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
# Update ratio selection based on slider changes
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
# Show/hide custom resize slider
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
# Define inputs for the main inference function
infer_inputs = [
model_selector, input_image, width_slider, height_slider, overlap_percentage,
num_inference_steps, resize_option, custom_resize_percentage, prompt_input,
alignment_dropdown, overlap_left, overlap_right, overlap_top, overlap_bottom
]
# --- Run Button Click ---
run_button.click(
fn=clear_result,
inputs=None,
outputs=[result], # Clear only the main result image
queue=False # Clearing should be fast
).then(
fn=infer,
inputs=infer_inputs,
outputs=[result], # Output to the main result image
).then(
fn=update_history, # Use the specific update function
inputs=[result, history_gallery], # Pass the result and current history
outputs=[history_gallery], # Update the history gallery
)
# --- Prompt Submit (Enter Key) ---
prompt_input.submit(
fn=clear_result,
inputs=None,
outputs=[result],
queue=False
).then(
fn=infer,
inputs=infer_inputs,
outputs=[result],
).then(
fn=update_history,
inputs=[result, history_gallery],
outputs=[history_gallery],
)
# --- Launch App ---
# Make sure you have example images at the specified paths or remove/update the gr.Examples section
# Create an 'examples' directory and place images like 'example_1.webp', 'example_2.jpg', 'example_3.jpg' inside it.
demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True) |