import gradio as gr import spaces import torch from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from huggingface_hub import hf_hub_download from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline from PIL import Image, ImageDraw import numpy as np # --- Configuration and Model Loading --- # Load ControlNet Union config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) sstate_dict = load_state_dict(model_file) model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) model.to(device="cuda", dtype=torch.float16) # Load VAE vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") # --- Load Multiple Pipelines --- pipelines = {} # Load RealVisXL V5.0 Lightning pipe_v5 = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, # Use the same controlnet variant="fp16", ).to("cuda") pipe_v5.scheduler = TCDScheduler.from_config(pipe_v5.scheduler.config) pipelines["RealVisXL V5.0 Lightning"] = pipe_v5 # Load RealVisXL V4.0 Lightning pipe_v4 = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae, # Use the same VAE controlnet=model, # Use the same controlnet variant="fp16", ).to("cuda") pipe_v4.scheduler = TCDScheduler.from_config(pipe_v4.scheduler.config) pipelines["RealVisXL V4.0 Lightning"] = pipe_v4 # --- Helper Functions --- def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): target_size = (width, height) # Calculate the scaling factor to fit the image within the target size scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) new_width = int(image.width * scale_factor) new_height = int(image.height * scale_factor) # Resize the source image to fit within target size source = image.resize((new_width, new_height), Image.LANCZOS) # Apply resize option using percentages if resize_option == "Full": resize_percentage = 100 elif resize_option == "50%": resize_percentage = 50 elif resize_option == "33%": resize_percentage = 33 elif resize_option == "25%": resize_percentage = 25 else: # Custom resize_percentage = custom_resize_percentage # Calculate new dimensions based on percentage resize_factor = resize_percentage / 100 new_width = int(source.width * resize_factor) new_height = int(source.height * resize_factor) # Ensure minimum size of 64 pixels new_width = max(new_width, 64) new_height = max(new_height, 64) # Resize the image source = source.resize((new_width, new_height), Image.LANCZOS) # Calculate the overlap in pixels based on the percentage overlap_x = int(new_width * (overlap_percentage / 100)) overlap_y = int(new_height * (overlap_percentage / 100)) # Ensure minimum overlap of 1 pixel overlap_x = max(overlap_x, 1) overlap_y = max(overlap_y, 1) # Calculate margins based on alignment if alignment == "Middle": margin_x = (target_size[0] - new_width) // 2 margin_y = (target_size[1] - new_height) // 2 elif alignment == "Left": margin_x = 0 margin_y = (target_size[1] - new_height) // 2 elif alignment == "Right": margin_x = target_size[0] - new_width margin_y = (target_size[1] - new_height) // 2 elif alignment == "Top": margin_x = (target_size[0] - new_width) // 2 margin_y = 0 elif alignment == "Bottom": margin_x = (target_size[0] - new_width) // 2 margin_y = target_size[1] - new_height else: # Default to Middle if alignment is somehow invalid margin_x = (target_size[0] - new_width) // 2 margin_y = (target_size[1] - new_height) // 2 # Adjust margins to eliminate gaps margin_x = max(0, min(margin_x, target_size[0] - new_width)) margin_y = max(0, min(margin_y, target_size[1] - new_height)) # Create a new background image and paste the resized source image background = Image.new('RGB', target_size, (255, 255, 255)) background.paste(source, (margin_x, margin_y)) # Create the mask mask = Image.new('L', target_size, 255) # White background (area to be filled) mask_draw = ImageDraw.Draw(mask) # Calculate overlap areas (where the mask should be black = keep original) white_gaps_patch = 2 # Small value to ensure no tiny gaps at edges if overlap is off # Determine the coordinates for the black rectangle (the non-masked area) # Start with the full area covered by the pasted image left_black = margin_x top_black = margin_y right_black = margin_x + new_width bottom_black = margin_y + new_height # Adjust the black area based on overlap checkboxes if overlap_left: left_black += overlap_x else: # If not overlapping left, ensure the black mask starts exactly at the image edge or slightly inside left_black += white_gaps_patch if alignment != "Left" else 0 if overlap_right: right_black -= overlap_x else: # If not overlapping right, ensure the black mask ends exactly at the image edge or slightly inside right_black -= white_gaps_patch if alignment != "Right" else 0 if overlap_top: top_black += overlap_y else: # If not overlapping top, ensure the black mask starts exactly at the image edge or slightly inside top_black += white_gaps_patch if alignment != "Top" else 0 if overlap_bottom: bottom_black -= overlap_y else: # If not overlapping bottom, ensure the black mask ends exactly at the image edge or slightly inside bottom_black -= white_gaps_patch if alignment != "Bottom" else 0 # Ensure coordinates are valid (left < right, top < bottom) left_black = min(left_black, target_size[0]) top_black = min(top_black, target_size[1]) right_black = max(left_black, right_black) # Ensure right >= left bottom_black = max(top_black, bottom_black) # Ensure bottom >= top right_black = min(right_black, target_size[0]) bottom_black = min(bottom_black, target_size[1]) # Draw the black rectangle onto the white mask # The area *inside* this rectangle will be kept (mask value 0) # The area *outside* this rectangle will be filled (mask value 255) if right_black > left_black and bottom_black > top_black: mask_draw.rectangle( [(left_black, top_black), (right_black, bottom_black)], fill=0 # Black means keep this area ) return background, mask @spaces.GPU(duration=24) def infer(selected_model_name, image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): if image is None: raise gr.Error("Please upload an input image.") try: # Select the pipeline based on the dropdown choice pipe = pipelines[selected_model_name] background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) # Create the controlnet input image (original image pasted on white bg, with masked area blacked out) cnet_image = background.copy() # Create a black image of the same size as the mask black_fill = Image.new('RGB', mask.size, (0, 0, 0)) # Paste the black fill using the mask (where mask is 255/white, paste black) cnet_image.paste(black_fill, (0, 0), mask) final_prompt = f"{prompt_input} , high quality, 4k" if prompt_input else "high quality, 4k" ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(final_prompt, "cuda", True) # Generate the image generator = torch.Generator(device="cuda").manual_seed(np.random.randint(0, 2**32)) # Add random seed # The pipeline expects the 'image' argument to be the background with the original content # and the 'mask_image' argument to define the area to *inpaint* (white area in our mask) result_image = pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=background, # The background containing the original image mask_image=mask, # The mask (white = fill, black = keep) control_image=cnet_image, # ControlNet input image num_inference_steps=num_inference_steps, generator=generator, # Use generator for reproducibility if needed output_type="pil" # Ensure PIL output ).images[0] # The pipeline directly returns the final composited image. # No need for manual pasting like before. return result_image except Exception as e: print(f"Error during inference: {e}") import traceback traceback.print_exc() # Return the background image or raise a Gradio error for clarity # raise gr.Error(f"Inference failed: {e}") # Or return the prepared background/mask for debugging background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) # Combine background and mask for visualization debug_img = Image.blend(background.convert("RGBA"), mask.convert("RGBA"), 0.5) return debug_img # Return a debug image or None def clear_result(): """Clears the result Image.""" return gr.update(value=None) def preload_presets(target_ratio, ui_width, ui_height): """Updates the width and height sliders based on the selected aspect ratio.""" if target_ratio == "9:16": changed_width = 720 changed_height = 1280 return changed_width, changed_height, gr.update(open=False) # Close accordion on preset elif target_ratio == "16:9": changed_width = 1280 changed_height = 720 return changed_width, changed_height, gr.update(open=False) # Close accordion on preset elif target_ratio == "1:1": changed_width = 1024 changed_height = 1024 return changed_width, changed_height, gr.update(open=False) # Close accordion on preset elif target_ratio == "Custom": # When switching to Custom, keep current slider values but open accordion return ui_width, ui_height, gr.update(open=True) # Should not happen, but return current values if it does return ui_width, ui_height, gr.update() def select_the_right_preset(user_width, user_height): if user_width == 720 and user_height == 1280: return "9:16" elif user_width == 1280 and user_height == 720: return "16:9" elif user_width == 1024 and user_height == 1024: return "1:1" else: return "Custom" def toggle_custom_resize_slider(resize_option): return gr.update(visible=(resize_option == "Custom")) def update_history(new_image, history): """Updates the history gallery with the new image.""" if new_image is None: # Don't add None to history (e.g., on clear or error) return history if history is None: history = [] # Prepend the new image (as PIL or path depending on Gallery config) history.insert(0, new_image) # Limit history size if desired (e.g., keep last 12) max_history = 12 if len(history) > max_history: history = history[:max_history] return history # --- CSS and Title --- css = """ h1 { text-align: center; display: block; } .gradio-container { max-width: 1280px !important; margin: auto !important; } """ title = """

Diffusers Image Outpaint Lightning

Expand images using ControlNet Union and Lightning models. Choose a base model below.

""" # --- Gradio UI --- with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: with gr.Column(): gr.HTML(title) with gr.Row(): with gr.Column(scale=2): # Input column input_image = gr.Image( type="pil", label="Input Image" ) # --- Model Selector --- model_selector = gr.Dropdown( label="Select Model", choices=list(pipelines.keys()), value="RealVisXL V5.0 Lightning", # Default model ) with gr.Row(): with gr.Column(scale=2): prompt_input = gr.Textbox(label="Prompt (Describe the desired output)", placeholder="e.g., beautiful landscape, photorealistic") with gr.Column(scale=1, min_width=120): run_button = gr.Button("Generate", variant="primary") with gr.Row(): target_ratio = gr.Radio( label="Target Ratio", choices=["9:16", "16:9", "1:1", "Custom"], value="9:16", # Default ratio scale=2 ) alignment_dropdown = gr.Dropdown( choices=["Middle", "Left", "Right", "Top", "Bottom"], value="Middle", label="Align Input Image" ) with gr.Accordion(label="Advanced settings", open=False) as settings_panel: with gr.Column(): with gr.Row(): width_slider = gr.Slider( label="Target Width", minimum=512, # Lowered minimum slightly maximum=1536, step=64, # Steps of 64 common for SDXL value=720, # Default width ) height_slider = gr.Slider( label="Target Height", minimum=512, # Lowered minimum slightly maximum=1536, step=64, # Steps of 64 value=1280, # Default height ) num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) with gr.Group(): overlap_percentage = gr.Slider( label="Mask overlap (%)", info="Percentage of the input image edge to keep (reduces seams)", minimum=1, maximum=50, value=10, # Default overlap step=1 ) gr.Markdown("Select edges to apply overlap:") with gr.Row(): overlap_top = gr.Checkbox(label="Top", value=True) overlap_right = gr.Checkbox(label="Right", value=True) overlap_left = gr.Checkbox(label="Left", value=True) overlap_bottom = gr.Checkbox(label="Bottom", value=True) with gr.Row(): resize_option = gr.Radio( label="Resize input image before placing", info="Scale the input image relative to its fitted size", choices=["Full", "50%", "33%", "25%", "Custom"], value="Full" # Default resize option ) custom_resize_percentage = gr.Slider( label="Custom resize (%)", minimum=1, maximum=100, step=1, value=50, visible=False # Initially hidden ) gr.Examples( examples=[ ["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720, "Middle"], ["./examples/example_2.jpg", "RealVisXL V4.0 Lightning", 1440, 810, "Left"], ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024, "Top"], ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024, "Bottom"], ], inputs=[input_image, model_selector, width_slider, height_slider, alignment_dropdown], label="Examples (Prompt is optional)" ) with gr.Column(scale=3): # Output column result = gr.Image( interactive=False, label="Generated Image", format="png", ) history_gallery = gr.Gallery( label="History", columns=4, # Adjust columns as needed object_fit="contain", interactive=False, show_label=True, allow_preview=True, preview=True ) # --- Event Listeners --- # Update sliders and accordion based on ratio selection target_ratio.change( fn=preload_presets, inputs=[target_ratio, width_slider, height_slider], outputs=[width_slider, height_slider, settings_panel], queue=False ) # Update ratio selection based on slider changes width_slider.change( fn=select_the_right_preset, inputs=[width_slider, height_slider], outputs=[target_ratio], queue=False ) height_slider.change( fn=select_the_right_preset, inputs=[width_slider, height_slider], outputs=[target_ratio], queue=False ) # Show/hide custom resize slider resize_option.change( fn=toggle_custom_resize_slider, inputs=[resize_option], outputs=[custom_resize_percentage], queue=False ) # Define inputs for the main inference function infer_inputs = [ model_selector, input_image, width_slider, height_slider, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment_dropdown, overlap_left, overlap_right, overlap_top, overlap_bottom ] # --- Run Button Click --- run_button.click( fn=clear_result, inputs=None, outputs=[result], # Clear only the main result image queue=False # Clearing should be fast ).then( fn=infer, inputs=infer_inputs, outputs=[result], # Output to the main result image ).then( fn=update_history, # Use the specific update function inputs=[result, history_gallery], # Pass the result and current history outputs=[history_gallery], # Update the history gallery ) # --- Prompt Submit (Enter Key) --- prompt_input.submit( fn=clear_result, inputs=None, outputs=[result], queue=False ).then( fn=infer, inputs=infer_inputs, outputs=[result], ).then( fn=update_history, inputs=[result, history_gallery], outputs=[history_gallery], ) # --- Launch App --- # Make sure you have example images at the specified paths or remove/update the gr.Examples section # Create an 'examples' directory and place images like 'example_1.webp', 'example_2.jpg', 'example_3.jpg' inside it. demo.queue(max_size=20).launch(share=False, ssr_mode=False, show_error=True)