face-to-all-666 / cog_sdxl_dataset_and_utils.py
primerz's picture
Update cog_sdxl_dataset_and_utils.py
58a5607 verified
raw
history blame
7.78 kB
# dataset_and_utils.py - Optimized and Improved Version
import os
from typing import Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import PIL
import torch
import torch.utils.checkpoint
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from PIL import Image
from safetensors import safe_open
from safetensors.torch import save_file
from torch.utils.data import Dataset
from transformers import AutoTokenizer, PretrainedConfig
def prepare_image(image: PIL.Image.Image, width: int = 512, height: int = 512) -> torch.Tensor:
"""
Prepares an image for model input by resizing and normalizing it.
"""
image = image.resize((width, height), resample=Image.BICUBIC, reducing_gap=1)
arr = np.array(image.convert("RGB"), dtype=np.float32) / 127.5 - 1
return torch.from_numpy(np.transpose(arr, (2, 0, 1))).unsqueeze(0)
def prepare_mask(mask: PIL.Image.Image, width: int = 512, height: int = 512) -> torch.Tensor:
"""
Prepares a mask image for model input by resizing and normalizing it.
"""
mask = mask.resize((width, height), resample=Image.BICUBIC, reducing_gap=1)
arr = np.array(mask.convert("L"), dtype=np.float32) / 255.0
return torch.from_numpy(np.expand_dims(arr, 0)).unsqueeze(0)
class PreprocessedDataset(Dataset):
def __init__(
self,
csv_path: str,
tokenizer_1,
tokenizer_2,
vae_encoder,
text_encoder_1=None,
text_encoder_2=None,
do_cache: bool = False,
size: int = 512,
text_dropout: float = 0.0,
scale_vae_latents: bool = True,
substitute_caption_map: Dict[str, str] = None,
):
"""
Dataset class that pre-processes images, masks, and text data for training.
"""
super().__init__()
self.data = pd.read_csv(csv_path)
self.size = size
self.scale_vae_latents = scale_vae_latents
self.text_dropout = text_dropout
self.csv_path = csv_path
self.tokenizer_1 = tokenizer_1
self.tokenizer_2 = tokenizer_2
self.vae_encoder = vae_encoder
self.do_cache = do_cache
self.caption = self.data["caption"].str.lower()
if substitute_caption_map:
for key, value in substitute_caption_map.items():
self.caption = self.caption.str.replace(key.lower(), value)
self.image_path = self.data["image_path"]
self.mask_path = self.data["mask_path"] if "mask_path" in self.data.columns else None
if text_encoder_1:
self.text_encoder_1 = text_encoder_1
self.text_encoder_2 = text_encoder_2
self.return_text_embeddings = True
raise NotImplementedError("Preprocessing for text encoder is not implemented yet.")
else:
self.return_text_embeddings = False
if self.do_cache:
self.vae_latents = []
self.tokens_tuple = []
self.masks = []
print("Caching dataset...")
for idx in range(len(self.data)):
token, vae_latent, mask = self._process(idx)
self.tokens_tuple.append(token)
self.vae_latents.append(vae_latent)
self.masks.append(mask)
del self.vae_encoder # Free up memory
@torch.no_grad()
def _process(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
"""
Internal function to process images, text, and masks for a given index.
"""
image_path = os.path.join(os.path.dirname(self.csv_path), self.image_path[idx])
image = prepare_image(Image.open(image_path).convert("RGB"), self.size, self.size).to(
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
)
caption = self.caption[idx]
ti1 = self.tokenizer_1(caption, padding="max_length", max_length=77, truncation=True, return_tensors="pt").input_ids
ti2 = self.tokenizer_2(caption, padding="max_length", max_length=77, truncation=True, return_tensors="pt").input_ids
vae_latent = self.vae_encoder.encode(image).latent_dist.sample()
if self.scale_vae_latents:
vae_latent *= self.vae_encoder.config.scaling_factor
if self.mask_path is None:
mask = torch.ones_like(vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device)
else:
mask_path = os.path.join(os.path.dirname(self.csv_path), self.mask_path[idx])
mask = prepare_mask(Image.open(mask_path), self.size, self.size).to(
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
)
mask = torch.nn.functional.interpolate(mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest")
mask = mask.repeat(1, vae_latent.shape[1], 1, 1)
assert mask.shape == vae_latent.shape, "Mask and latent dimensions must match."
return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze()
def __len__(self) -> int:
return len(self.data)
def __getitem__(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
return self.atidx(idx)
def atidx(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
return self._process(idx) if not self.do_cache else (self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx])
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"):
"""
Dynamically imports a model class based on configuration.
"""
config = PretrainedConfig.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder, revision=revision)
model_class = config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"Unsupported model class: {model_class}")
def load_models(pretrained_model_name_or_path, revision, device, weight_dtype):
"""
Loads required models from a given pretrained path.
"""
tokenizer_1 = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer", revision=revision, use_fast=False)
tokenizer_2 = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2", revision=revision, use_fast=False)
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
text_encoder_cls_one = import_model_class_from_model_name_or_path(pretrained_model_name_or_path, revision)
text_encoder_cls_two = import_model_class_from_model_name_or_path(pretrained_model_name_or_path, revision, subfolder="text_encoder_2")
text_encoder_1 = text_encoder_cls_one.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder", revision=revision)
text_encoder_2 = text_encoder_cls_two.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", revision=revision)
for model in [vae, text_encoder_1, text_encoder_2]:
model.requires_grad_(False)
model.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
return tokenizer_1, tokenizer_2, noise_scheduler, text_encoder_1, text_encoder_2, vae, unet