# dataset_and_utils.py - Optimized and Improved Version import os from typing import Dict, List, Optional, Tuple import numpy as np import pandas as pd import PIL import torch import torch.utils.checkpoint from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel from PIL import Image from safetensors import safe_open from safetensors.torch import save_file from torch.utils.data import Dataset from transformers import AutoTokenizer, PretrainedConfig def prepare_image(image: PIL.Image.Image, width: int = 512, height: int = 512) -> torch.Tensor: """ Prepares an image for model input by resizing and normalizing it. """ image = image.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) arr = np.array(image.convert("RGB"), dtype=np.float32) / 127.5 - 1 return torch.from_numpy(np.transpose(arr, (2, 0, 1))).unsqueeze(0) def prepare_mask(mask: PIL.Image.Image, width: int = 512, height: int = 512) -> torch.Tensor: """ Prepares a mask image for model input by resizing and normalizing it. """ mask = mask.resize((width, height), resample=Image.BICUBIC, reducing_gap=1) arr = np.array(mask.convert("L"), dtype=np.float32) / 255.0 return torch.from_numpy(np.expand_dims(arr, 0)).unsqueeze(0) class PreprocessedDataset(Dataset): def __init__( self, csv_path: str, tokenizer_1, tokenizer_2, vae_encoder, text_encoder_1=None, text_encoder_2=None, do_cache: bool = False, size: int = 512, text_dropout: float = 0.0, scale_vae_latents: bool = True, substitute_caption_map: Dict[str, str] = None, ): """ Dataset class that pre-processes images, masks, and text data for training. """ super().__init__() self.data = pd.read_csv(csv_path) self.size = size self.scale_vae_latents = scale_vae_latents self.text_dropout = text_dropout self.csv_path = csv_path self.tokenizer_1 = tokenizer_1 self.tokenizer_2 = tokenizer_2 self.vae_encoder = vae_encoder self.do_cache = do_cache self.caption = self.data["caption"].str.lower() if substitute_caption_map: for key, value in substitute_caption_map.items(): self.caption = self.caption.str.replace(key.lower(), value) self.image_path = self.data["image_path"] self.mask_path = self.data["mask_path"] if "mask_path" in self.data.columns else None if text_encoder_1: self.text_encoder_1 = text_encoder_1 self.text_encoder_2 = text_encoder_2 self.return_text_embeddings = True raise NotImplementedError("Preprocessing for text encoder is not implemented yet.") else: self.return_text_embeddings = False if self.do_cache: self.vae_latents = [] self.tokens_tuple = [] self.masks = [] print("Caching dataset...") for idx in range(len(self.data)): token, vae_latent, mask = self._process(idx) self.tokens_tuple.append(token) self.vae_latents.append(vae_latent) self.masks.append(mask) del self.vae_encoder # Free up memory @torch.no_grad() def _process(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: """ Internal function to process images, text, and masks for a given index. """ image_path = os.path.join(os.path.dirname(self.csv_path), self.image_path[idx]) image = prepare_image(Image.open(image_path).convert("RGB"), self.size, self.size).to( dtype=self.vae_encoder.dtype, device=self.vae_encoder.device ) caption = self.caption[idx] ti1 = self.tokenizer_1(caption, padding="max_length", max_length=77, truncation=True, return_tensors="pt").input_ids ti2 = self.tokenizer_2(caption, padding="max_length", max_length=77, truncation=True, return_tensors="pt").input_ids vae_latent = self.vae_encoder.encode(image).latent_dist.sample() if self.scale_vae_latents: vae_latent *= self.vae_encoder.config.scaling_factor if self.mask_path is None: mask = torch.ones_like(vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device) else: mask_path = os.path.join(os.path.dirname(self.csv_path), self.mask_path[idx]) mask = prepare_mask(Image.open(mask_path), self.size, self.size).to( dtype=self.vae_encoder.dtype, device=self.vae_encoder.device ) mask = torch.nn.functional.interpolate(mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest") mask = mask.repeat(1, vae_latent.shape[1], 1, 1) assert mask.shape == vae_latent.shape, "Mask and latent dimensions must match." return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze() def __len__(self) -> int: return len(self.data) def __getitem__(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: return self.atidx(idx) def atidx(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: return self._process(idx) if not self.do_cache else (self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx]) def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"): """ Dynamically imports a model class based on configuration. """ config = PretrainedConfig.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder, revision=revision) model_class = config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"Unsupported model class: {model_class}") def load_models(pretrained_model_name_or_path, revision, device, weight_dtype): """ Loads required models from a given pretrained path. """ tokenizer_1 = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer", revision=revision, use_fast=False) tokenizer_2 = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2", revision=revision, use_fast=False) noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") text_encoder_cls_one = import_model_class_from_model_name_or_path(pretrained_model_name_or_path, revision) text_encoder_cls_two = import_model_class_from_model_name_or_path(pretrained_model_name_or_path, revision, subfolder="text_encoder_2") text_encoder_1 = text_encoder_cls_one.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder", revision=revision) text_encoder_2 = text_encoder_cls_two.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision) vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision) unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", revision=revision) for model in [vae, text_encoder_1, text_encoder_2]: model.requires_grad_(False) model.to(device, dtype=weight_dtype) unet.to(device, dtype=weight_dtype) return tokenizer_1, tokenizer_2, noise_scheduler, text_encoder_1, text_encoder_2, vae, unet