File size: 7,780 Bytes
58a5607
4a09d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a5607
 
 
 
 
 
 
4a09d4f
 
58a5607
 
 
 
 
 
 
4a09d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a5607
4a09d4f
58a5607
 
 
4a09d4f
 
58a5607
 
 
4a09d4f
58a5607
 
 
 
4a09d4f
58a5607
4a09d4f
58a5607
 
 
4a09d4f
58a5607
 
4a09d4f
58a5607
4a09d4f
 
 
58a5607
 
 
4a09d4f
58a5607
4a09d4f
 
 
58a5607
4a09d4f
 
 
58a5607
4a09d4f
58a5607
4a09d4f
 
58a5607
 
 
 
 
 
4a09d4f
 
 
 
58a5607
 
4a09d4f
 
 
58a5607
4a09d4f
 
58a5607
4a09d4f
58a5607
 
4a09d4f
 
58a5607
4a09d4f
 
58a5607
4a09d4f
 
 
 
 
 
58a5607
 
4a09d4f
58a5607
 
4a09d4f
 
58a5607
 
 
 
 
 
4a09d4f
 
 
 
 
 
 
 
58a5607
4a09d4f
 
 
 
58a5607
4a09d4f
58a5607
 
4a09d4f
58a5607
4a09d4f
58a5607
 
4a09d4f
58a5607
 
4a09d4f
58a5607
 
4a09d4f
58a5607
 
 
4a09d4f
58a5607
4a09d4f
58a5607
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# dataset_and_utils.py - Optimized and Improved Version
import os
from typing import Dict, List, Optional, Tuple

import numpy as np
import pandas as pd
import PIL
import torch
import torch.utils.checkpoint
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from PIL import Image
from safetensors import safe_open
from safetensors.torch import save_file
from torch.utils.data import Dataset
from transformers import AutoTokenizer, PretrainedConfig


def prepare_image(image: PIL.Image.Image, width: int = 512, height: int = 512) -> torch.Tensor:
    """
    Prepares an image for model input by resizing and normalizing it.
    """
    image = image.resize((width, height), resample=Image.BICUBIC, reducing_gap=1)
    arr = np.array(image.convert("RGB"), dtype=np.float32) / 127.5 - 1
    return torch.from_numpy(np.transpose(arr, (2, 0, 1))).unsqueeze(0)


def prepare_mask(mask: PIL.Image.Image, width: int = 512, height: int = 512) -> torch.Tensor:
    """
    Prepares a mask image for model input by resizing and normalizing it.
    """
    mask = mask.resize((width, height), resample=Image.BICUBIC, reducing_gap=1)
    arr = np.array(mask.convert("L"), dtype=np.float32) / 255.0
    return torch.from_numpy(np.expand_dims(arr, 0)).unsqueeze(0)


class PreprocessedDataset(Dataset):
    def __init__(
        self,
        csv_path: str,
        tokenizer_1,
        tokenizer_2,
        vae_encoder,
        text_encoder_1=None,
        text_encoder_2=None,
        do_cache: bool = False,
        size: int = 512,
        text_dropout: float = 0.0,
        scale_vae_latents: bool = True,
        substitute_caption_map: Dict[str, str] = None,
    ):
        """
        Dataset class that pre-processes images, masks, and text data for training.
        """
        super().__init__()
        self.data = pd.read_csv(csv_path)
        self.size = size
        self.scale_vae_latents = scale_vae_latents
        self.text_dropout = text_dropout
        self.csv_path = csv_path
        self.tokenizer_1 = tokenizer_1
        self.tokenizer_2 = tokenizer_2
        self.vae_encoder = vae_encoder
        self.do_cache = do_cache

        self.caption = self.data["caption"].str.lower()

        if substitute_caption_map:
            for key, value in substitute_caption_map.items():
                self.caption = self.caption.str.replace(key.lower(), value)

        self.image_path = self.data["image_path"]
        self.mask_path = self.data["mask_path"] if "mask_path" in self.data.columns else None

        if text_encoder_1:
            self.text_encoder_1 = text_encoder_1
            self.text_encoder_2 = text_encoder_2
            self.return_text_embeddings = True
            raise NotImplementedError("Preprocessing for text encoder is not implemented yet.")
        else:
            self.return_text_embeddings = False

        if self.do_cache:
            self.vae_latents = []
            self.tokens_tuple = []
            self.masks = []
            print("Caching dataset...")
            for idx in range(len(self.data)):
                token, vae_latent, mask = self._process(idx)
                self.tokens_tuple.append(token)
                self.vae_latents.append(vae_latent)
                self.masks.append(mask)
            del self.vae_encoder  # Free up memory

    @torch.no_grad()
    def _process(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
        """
        Internal function to process images, text, and masks for a given index.
        """
        image_path = os.path.join(os.path.dirname(self.csv_path), self.image_path[idx])
        image = prepare_image(Image.open(image_path).convert("RGB"), self.size, self.size).to(
            dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
        )

        caption = self.caption[idx]
        ti1 = self.tokenizer_1(caption, padding="max_length", max_length=77, truncation=True, return_tensors="pt").input_ids
        ti2 = self.tokenizer_2(caption, padding="max_length", max_length=77, truncation=True, return_tensors="pt").input_ids

        vae_latent = self.vae_encoder.encode(image).latent_dist.sample()
        if self.scale_vae_latents:
            vae_latent *= self.vae_encoder.config.scaling_factor

        if self.mask_path is None:
            mask = torch.ones_like(vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device)
        else:
            mask_path = os.path.join(os.path.dirname(self.csv_path), self.mask_path[idx])
            mask = prepare_mask(Image.open(mask_path), self.size, self.size).to(
                dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
            )
            mask = torch.nn.functional.interpolate(mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest")
            mask = mask.repeat(1, vae_latent.shape[1], 1, 1)

        assert mask.shape == vae_latent.shape, "Mask and latent dimensions must match."

        return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze()

    def __len__(self) -> int:
        return len(self.data)

    def __getitem__(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
        return self.atidx(idx)

    def atidx(self, idx: int) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
        return self._process(idx) if not self.do_cache else (self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx])


def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"):
    """
    Dynamically imports a model class based on configuration.
    """
    config = PretrainedConfig.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder, revision=revision)
    model_class = config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel
        return CLIPTextModel
    elif model_class == "CLIPTextModelWithProjection":
        from transformers import CLIPTextModelWithProjection
        return CLIPTextModelWithProjection
    else:
        raise ValueError(f"Unsupported model class: {model_class}")


def load_models(pretrained_model_name_or_path, revision, device, weight_dtype):
    """
    Loads required models from a given pretrained path.
    """
    tokenizer_1 = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer", revision=revision, use_fast=False)
    tokenizer_2 = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2", revision=revision, use_fast=False)

    noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")

    text_encoder_cls_one = import_model_class_from_model_name_or_path(pretrained_model_name_or_path, revision)
    text_encoder_cls_two = import_model_class_from_model_name_or_path(pretrained_model_name_or_path, revision, subfolder="text_encoder_2")

    text_encoder_1 = text_encoder_cls_one.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder", revision=revision)
    text_encoder_2 = text_encoder_cls_two.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision)

    vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
    unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", revision=revision)

    for model in [vae, text_encoder_1, text_encoder_2]:
        model.requires_grad_(False)
        model.to(device, dtype=weight_dtype)

    unet.to(device, dtype=weight_dtype)

    return tokenizer_1, tokenizer_2, noise_scheduler, text_encoder_1, text_encoder_2, vae, unet