File size: 1,471 Bytes
3c4ad65
 
 
 
d1035a0
3c4ad65
 
19f09f4
71a635a
1d97cff
3c4ad65
1d97cff
 
 
 
 
821e791
 
1d97cff
 
 
15275a9
821e791
1d97cff
3c4ad65
1d97cff
19f09f4
3c4ad65
1d97cff
 
 
 
3c4ad65
1d97cff
 
 
 
 
 
 
930e423
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Transform an audio to text script with language detection.
# Author: Pratiksha Patel
# Description: This script record the audio, transform it to text, detect the language of the file and save it to a txt file.
# import required modules
import torch
import streamlit as st
from audio_recorder_streamlit import audio_recorder
from langdetect import detect
import numpy as np
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq

def transcribe_audio(audio_bytes):
    processor = AutoProcessor.from_pretrained("openai/whisper-large")
    model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
    audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
    audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
    inputs = processor(feature_extractor=audio_tensor, sampling_rate=16000, return_tensors="pt")
    logits = model(**inputs).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    transcription = processor.decode(predicted_ids[0])
    return transcription


# Streamlit app
st.title("Audio to Text Transcription..")

audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)

if audio_bytes:
    st.audio(audio_bytes, format="audio/wav")
    
    transcription = transcribe_audio(audio_bytes)

    if transcription:
        st.write("Transcription:")
        st.write(transcription)
    else:
        st.write("Error: Failed to transcribe audio.")
else:
    st.write("No audio recorded.")