Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
# Author: Pratiksha Patel
|
3 |
# Description: This script record the audio, transform it to text, detect the language of the file and save it to a txt file.
|
4 |
# import required modules
|
5 |
-
import os
|
6 |
import torch
|
7 |
import streamlit as st
|
8 |
from audio_recorder_streamlit import audio_recorder
|
@@ -15,7 +14,7 @@ def transcribe_audio(audio_bytes):
|
|
15 |
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
|
16 |
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
17 |
audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
|
18 |
-
input_values = processor(audio_tensor, return_tensors="pt", sampling_rate=16000).input_values
|
19 |
logits = model(input_values).logits
|
20 |
predicted_ids = torch.argmax(logits, dim=-1)
|
21 |
transcription = processor.decode(predicted_ids[0])
|
@@ -38,3 +37,4 @@ if audio_bytes:
|
|
38 |
st.write("Error: Failed to transcribe audio.")
|
39 |
else:
|
40 |
st.write("No audio recorded.")
|
|
|
|
2 |
# Author: Pratiksha Patel
|
3 |
# Description: This script record the audio, transform it to text, detect the language of the file and save it to a txt file.
|
4 |
# import required modules
|
|
|
5 |
import torch
|
6 |
import streamlit as st
|
7 |
from audio_recorder_streamlit import audio_recorder
|
|
|
14 |
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
|
15 |
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
16 |
audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
|
17 |
+
input_values = processor(input_values=audio_tensor, return_tensors="pt", sampling_rate=16000).input_values
|
18 |
logits = model(input_values).logits
|
19 |
predicted_ids = torch.argmax(logits, dim=-1)
|
20 |
transcription = processor.decode(predicted_ids[0])
|
|
|
37 |
st.write("Error: Failed to transcribe audio.")
|
38 |
else:
|
39 |
st.write("No audio recorded.")
|
40 |
+
|