pratikshahp commited on
Commit
0d2601e
·
verified ·
1 Parent(s): d1035a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -23
app.py CHANGED
@@ -1,6 +1,5 @@
1
  # Transform an audio to text script with language detection.
2
  # Author: Pratiksha Patel
3
-
4
  # Description: This script record the audio, transform it to text, detect the language of the file and save it to a txt file.
5
  # import required modules
6
  import os
@@ -9,17 +8,12 @@ import streamlit as st
9
  from audio_recorder_streamlit import audio_recorder
10
  from langdetect import detect
11
  import numpy as np
12
- # Use a pipeline as a high-level helper
13
- #from transformers import pipeline
14
- #pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
15
- # Load model directly
16
  from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
17
 
18
  def transcribe_audio(audio_bytes):
19
  processor = AutoProcessor.from_pretrained("openai/whisper-large")
20
  model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
21
  audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
22
- # Cast audio array to double precision and normalize
23
  audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
24
  input_values = processor(audio_tensor, return_tensors="pt", sampling_rate=16000).input_values
25
  logits = model(input_values).logits
@@ -27,17 +21,6 @@ def transcribe_audio(audio_bytes):
27
  transcription = processor.decode(predicted_ids[0])
28
  return transcription
29
 
30
- # Function to open a file
31
- #def startfile(fn):
32
- # os.system('open %s' % fn)
33
-
34
- # Function to create and open a txt file
35
- #def create_and_open_txt(text, filename):
36
- # Create and write the text to a txt file
37
- # with open(filename, "w") as file:
38
- # file.write(text)
39
- # startfile(filename)
40
-
41
  # Streamlit app
42
  st.title("Audio to Text Transcription..")
43
 
@@ -55,9 +38,3 @@ if audio_bytes:
55
  st.write("Error: Failed to transcribe audio.")
56
  else:
57
  st.write("No audio recorded.")
58
- # Detect the language
59
- #language = detect(transcription)
60
- #st.write(f"Detected language: {language}")
61
-
62
- # Create and open a txt file with the text
63
- #create_and_open_txt(transcription, f"output_{language}.txt")
 
1
  # Transform an audio to text script with language detection.
2
  # Author: Pratiksha Patel
 
3
  # Description: This script record the audio, transform it to text, detect the language of the file and save it to a txt file.
4
  # import required modules
5
  import os
 
8
  from audio_recorder_streamlit import audio_recorder
9
  from langdetect import detect
10
  import numpy as np
 
 
 
 
11
  from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
12
 
13
  def transcribe_audio(audio_bytes):
14
  processor = AutoProcessor.from_pretrained("openai/whisper-large")
15
  model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
16
  audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
 
17
  audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
18
  input_values = processor(audio_tensor, return_tensors="pt", sampling_rate=16000).input_values
19
  logits = model(input_values).logits
 
21
  transcription = processor.decode(predicted_ids[0])
22
  return transcription
23
 
 
 
 
 
 
 
 
 
 
 
 
24
  # Streamlit app
25
  st.title("Audio to Text Transcription..")
26
 
 
38
  st.write("Error: Failed to transcribe audio.")
39
  else:
40
  st.write("No audio recorded.")