Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,9 +6,25 @@
|
|
| 6 |
import os
|
| 7 |
import streamlit as st
|
| 8 |
from audio_recorder_streamlit import audio_recorder
|
| 9 |
-
import whisper
|
| 10 |
from langdetect import detect
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Function to open a file
|
| 13 |
def startfile(fn):
|
| 14 |
os.system('open %s' % fn)
|
|
@@ -20,18 +36,23 @@ def create_and_open_txt(text, filename):
|
|
| 20 |
file.write(text)
|
| 21 |
startfile(filename)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
st.title("Audio to Text Transcription..")
|
|
|
|
| 25 |
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
print(transcribed_text)
|
| 32 |
-
st.write("Transcription:")
|
| 33 |
-
st.write(transcribed_text)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Detect the language
|
| 36 |
language = detect(transcribed_text)
|
| 37 |
st.write(f"Detected language: {language}")
|
|
|
|
| 6 |
import os
|
| 7 |
import streamlit as st
|
| 8 |
from audio_recorder_streamlit import audio_recorder
|
|
|
|
| 9 |
from langdetect import detect
|
| 10 |
+
# Use a pipeline as a high-level helper
|
| 11 |
+
from transformers import pipeline
|
| 12 |
+
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large")
|
| 13 |
+
# Load model directly
|
| 14 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
| 15 |
|
| 16 |
+
def transcribe_audio(audio_bytes):
|
| 17 |
+
processor = AutoProcessor.from_pretrained("openai/whisper-large")
|
| 18 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
|
| 19 |
+
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
| 20 |
+
# Cast audio array to double precision and normalize
|
| 21 |
+
audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
|
| 22 |
+
input_values = processor(audio_tensor, return_tensors="pt", sampling_rate=16000).input_values
|
| 23 |
+
logits = model(input_values).logits
|
| 24 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 25 |
+
transcription = processor.decode(predicted_ids[0])
|
| 26 |
+
return transcription
|
| 27 |
+
|
| 28 |
# Function to open a file
|
| 29 |
def startfile(fn):
|
| 30 |
os.system('open %s' % fn)
|
|
|
|
| 36 |
file.write(text)
|
| 37 |
startfile(filename)
|
| 38 |
|
| 39 |
+
# Streamlit app
|
| 40 |
st.title("Audio to Text Transcription..")
|
| 41 |
+
|
| 42 |
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)
|
| 43 |
|
| 44 |
+
if audio_bytes:
|
| 45 |
+
st.audio(audio_bytes, format="audio/wav")
|
| 46 |
+
|
| 47 |
+
transcription = transcribe_audio(audio_bytes)
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
if transcription:
|
| 50 |
+
st.write("Transcription:")
|
| 51 |
+
st.write(transcription)
|
| 52 |
+
else:
|
| 53 |
+
st.write("Error: Failed to transcribe audio.")
|
| 54 |
+
else:
|
| 55 |
+
st.write("No audio recorded.")
|
| 56 |
# Detect the language
|
| 57 |
language = detect(transcribed_text)
|
| 58 |
st.write(f"Detected language: {language}")
|