Spaces:
Running
Running
File size: 3,446 Bytes
eb173d2 9925a18 eb173d2 261d20f eb173d2 261d20f fa1a4e5 261d20f 61e3c30 261d20f fa1a4e5 261d20f 64f51f4 261d20f eb173d2 9c6d143 eb173d2 40ba46f eb173d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import gradio as gr
import os
import torch
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from huggingface_hub import HfApi
from label_dicts import ILLFRAMES_MIGRATION_LABEL_NAMES, ILLFRAMES_COVID_LABEL_NAMES
HF_TOKEN = os.environ["hf_read"]
languages = [
"English"
]
domains = {
"Covid": "covid",
"Migration": "migration"
}
# --- DEBUG ---
import shutil
def convert_size(size):
for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']:
if size < 1024:
return f"{size:.2f} {unit}"
size /= 1024
def get_disk_space(path="/"):
total, used, free = shutil.disk_usage(path)
return {
"Total": convert_size(total),
"Used": convert_size(used),
"Free": convert_size(free)
}
# ---
def check_huggingface_path(checkpoint_path: str):
try:
hf_api = HfApi(token=HF_TOKEN)
hf_api.model_info(checkpoint_path, token=HF_TOKEN)
return True
except:
return False
def build_huggingface_path(domain: str):
return f"poltextlab/xlm-roberta-large-english-ILLFRAMES-{domain}"
def predict(text, model_id, tokenizer_id, label_names):
device = torch.device("cpu")
# --- DEBUG ---
disk_space = get_disk_space('/data/')
print("Disk Space Info:")
for key, value in disk_space.items():
print(f"{key}: {value}")
# ---
try:
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, offload_folder="offload", device_map="auto", token=HF_TOKEN)
except:
disk_space = get_disk_space('/data/')
print("Disk Space Error:")
for key, value in disk_space.items():
print(f"{key}: {value}")
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN, force_download=True)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
inputs = tokenizer(text,
max_length=256,
truncation=True,
padding="do_not_pad",
return_tensors="pt").to(device)
model.eval()
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
NUMS_DICT = {i: key for i, key in enumerate(sorted(label_names.keys()))}
output_pred = {f"[{NUMS_DICT[i]}] {label_names[NUMS_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
return output_pred, output_info
def predict_illframes(text, language, domain):
domain = domains[domain]
model_id = build_huggingface_path(domain)
tokenizer_id = "xlm-roberta-large"
if domain == "migration":
label_names = ILLFRAMES_MIGRATION_LABEL_NAMES
else:
label_names = ILLFRAMES_COVID_LABEL_NAMES
return predict(text, model_id, tokenizer_id, label_names)
demo = gr.Interface(
fn=predict_illframes,
inputs=[gr.Textbox(lines=6, label="Input"),
gr.Dropdown(languages, label="Language"),
gr.Dropdown(domains.keys(), label="Domain")],
outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()]) |