poltextlab commited on
Commit
eb173d2
·
verified ·
1 Parent(s): 78f13cb

Add illframes to the demo

Browse files
Files changed (1) hide show
  1. interfaces/illframes.py +75 -0
interfaces/illframes.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import os
4
+ import torch
5
+ import numpy as np
6
+ import pandas as pd
7
+ from transformers import AutoModelForSequenceClassification
8
+ from transformers import AutoTokenizer
9
+ from huggingface_hub import HfApi
10
+
11
+ from label_dicts import ILLFRAMES_MIGRATION_LABEL_NAMES, ILLFRAMES_COVID_LABEL_NAMES
12
+
13
+ HF_TOKEN = os.environ["hf_read"]
14
+
15
+ languages = [
16
+ "English"
17
+ ]
18
+
19
+ domains = {
20
+ "Covid": "covid",
21
+ "Migration": "migration"
22
+ }
23
+
24
+ def check_huggingface_path(checkpoint_path: str):
25
+ try:
26
+ hf_api = HfApi(token=HF_TOKEN)
27
+ hf_api.model_info(checkpoint_path, token=HF_TOKEN)
28
+ return True
29
+ except:
30
+ return False
31
+
32
+ def build_huggingface_path(domain: str):
33
+ return f"poltextlab/xlm-roberta-large-english-ILLFRAMES-{domain}"
34
+
35
+ def predict(text, model_id, tokenizer_id, label_names):
36
+ device = torch.device("cpu")
37
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN)
38
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
39
+
40
+ inputs = tokenizer(text,
41
+ max_length=256,
42
+ truncation=True,
43
+ padding="do_not_pad",
44
+ return_tensors="pt").to(device)
45
+ model.eval()
46
+
47
+ with torch.no_grad():
48
+ logits = model(**inputs).logits
49
+
50
+ probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
51
+
52
+ NUMS_DICT = {i: key for i, key in enumerate(sorted(label_names.keys()))}
53
+
54
+ output_pred = {f"[{NUMS_DICT[i]}] {label_names[NUMS_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]}
55
+ output_info = f'<p style="text-align: center; display: block">Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.</p>'
56
+ return output_pred, output_info
57
+
58
+ def predict_illframes(text, domain):
59
+ domain = domains[domain]
60
+ model_id = build_huggingface_path(domain)
61
+ tokenizer_id = "xlm-roberta-large"
62
+
63
+ if domain == "migration":
64
+ label_names = ILLFRAMES_MIGRATION_LABEL_NAMES
65
+ else:
66
+ label_names = ILLFRAMES_COVID_LABEL_NAMES
67
+
68
+ return predict(text, model_id, tokenizer_id, label_names)
69
+
70
+ demo = gr.Interface(
71
+ fn=predict_cap,
72
+ inputs=[gr.Textbox(lines=6, label="Input"),
73
+ gr.Dropdown(languages, label="Language"),
74
+ gr.Dropdown(domains.keys(), label="Domain")],
75
+ outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])