Spaces:
Running
Running
debug disk space error
Browse files- interfaces/illframes.py +39 -1
interfaces/illframes.py
CHANGED
@@ -21,6 +21,27 @@ domains = {
|
|
21 |
"Migration": "migration"
|
22 |
}
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def check_huggingface_path(checkpoint_path: str):
|
25 |
try:
|
26 |
hf_api = HfApi(token=HF_TOKEN)
|
@@ -34,7 +55,24 @@ def build_huggingface_path(domain: str):
|
|
34 |
|
35 |
def predict(text, model_id, tokenizer_id, label_names):
|
36 |
device = torch.device("cpu")
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
39 |
|
40 |
inputs = tokenizer(text,
|
|
|
21 |
"Migration": "migration"
|
22 |
}
|
23 |
|
24 |
+
|
25 |
+
# --- DEBUG ---
|
26 |
+
import shutil
|
27 |
+
|
28 |
+
def convert_size(size):
|
29 |
+
for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']:
|
30 |
+
if size < 1024:
|
31 |
+
return f"{size:.2f} {unit}"
|
32 |
+
size /= 1024
|
33 |
+
|
34 |
+
def get_disk_space(path="/"):
|
35 |
+
total, used, free = shutil.disk_usage(path)
|
36 |
+
|
37 |
+
return {
|
38 |
+
"Total": convert_size(total),
|
39 |
+
"Used": convert_size(used),
|
40 |
+
"Free": convert_size(free)
|
41 |
+
}
|
42 |
+
|
43 |
+
# ---
|
44 |
+
|
45 |
def check_huggingface_path(checkpoint_path: str):
|
46 |
try:
|
47 |
hf_api = HfApi(token=HF_TOKEN)
|
|
|
55 |
|
56 |
def predict(text, model_id, tokenizer_id, label_names):
|
57 |
device = torch.device("cpu")
|
58 |
+
|
59 |
+
# --- DEBUG ---
|
60 |
+
|
61 |
+
disk_space = get_disk_space()
|
62 |
+
print("Disk Space Info:")
|
63 |
+
for key, value in disk_space.items():
|
64 |
+
print(f"{key}: {value}")
|
65 |
+
|
66 |
+
# ---
|
67 |
+
|
68 |
+
try:
|
69 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN)
|
70 |
+
except:
|
71 |
+
disk_space = get_disk_space()
|
72 |
+
print("Disk Space Error:")
|
73 |
+
for key, value in disk_space.items():
|
74 |
+
print(f"{key}: {value}")
|
75 |
+
|
76 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
77 |
|
78 |
inputs = tokenizer(text,
|