File size: 2,807 Bytes
7bbce45
42a1748
d10bbd6
42a1748
 
 
 
 
 
 
 
 
 
 
 
d10bbd6
c7d77fa
d10bbd6
c7d77fa
 
d10bbd6
c7d77fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5b235a
 
 
 
 
 
 
 
 
 
d10bbd6
c7d77fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbce45
 
c7d77fa
7bbce45
c7d77fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from smolagents import CodeAgent,HfApiModel  # adjust the import to your actual smolagents module

# Step 1: Set up your smolagents agent
def create_agent():
    """
    Initialize and return the agent.
    Adjust parameters like model type or configuration as needed.
    """
    # For example, we initialize an Agent with a sample model
    agent = CodeAgent(tools=[], model=HfApiModel(model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/')) # Change arguments as per your agent configuration
    return agent

# Create the agent instance once so that it persists across user interactions
agent = create_agent()

def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
    """
    This function builds the conversation history, calls the smolagents agent,
    and streams the response back to Gradio.
    """
    # Build the conversation messages list, starting with the system prompt.
    messages = [{"role": "system", "content": system_message}]
    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    # Add the latest user input.
    messages.append({"role": "user", "content": message})
    
    # Initialize an empty response.
    complete_response = ""
    
    # Step 2: Call the agent's chat_completion method.
    # If your smolagents agent supports streaming (i.e. yielding tokens as they are generated),
    # this loop will yield partial responses to update the UI.
    # If streaming is not supported, you can simply do:
    #   complete_response = agent.chat_completion(messages, max_tokens, temperature, top_p)
    #   yield complete_response
    # for token in agent.chat_completion(
    #     messages,
    #     max_tokens=max_tokens,
    #     temperature=temperature,
    #     top_p=top_p,
    #     stream=True  # set to False if your agent does not support streaming
    # ):
    #     complete_response += token
    complete_response=agent.run(messages)
    yield complete_response

# Step 3: Create the Gradio ChatInterface.
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
    ],
)

# Step 4: Launch the Gradio app.
if __name__ == "__main__":
    demo.launch()