palbha commited on
Commit
d10bbd6
·
verified ·
1 Parent(s): 2cb46c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -60
app.py CHANGED
@@ -1,64 +1,39 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ # Import necessary libraries
2
  import gradio as gr
3
+ from smolagents import Agent # Replace with your actual import if different
4
+
5
+ # Step 1: Set up your smolagents agent
6
+ def create_agent():
7
+ """
8
+ Initialize and return the agent.
9
+ Adjust parameters like model type or configuration as needed.
10
+ """
11
+ # For example, we initialize an Agent with a sample model
12
+ agent = Agent(model=HfApiModel(model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/')) # Change arguments as per your agent configuration
13
+ return agent
14
+
15
+ # Create the agent instance once so that it persists across user interactions
16
+ agent = create_agent()
17
+
18
+ # Step 2: Define a function that uses the agent to process user input
19
+ def process_input(user_input):
20
+ """
21
+ This function receives user input from the Gradio interface,
22
+ processes it with the smolagents agent, and returns the agent's response.
23
+ """
24
+ # Use your agent's method to generate a response; here we assume a 'run' method exists.
25
+ response = agent.run(user_input)
26
+ return response
27
+
28
+ # Step 3: Build the Gradio interface
29
+ iface = gr.Interface(
30
+ fn=process_input, # This is the function Gradio will call when a user submits input.
31
+ inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
32
+ outputs="text",
33
+ title="Smolagents Agent via Gradio",
34
+ description="This interface integrates a smolagents-based agent with Gradio to process text inputs."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  )
36
 
37
+ # Step 4: Launch the Gradio app
38
  if __name__ == "__main__":
39
+ iface.launch()