palbha commited on
Commit
c7d77fa
·
verified ·
1 Parent(s): a6c3578

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -30
app.py CHANGED
@@ -1,39 +1,61 @@
1
- # Import necessary libraries
2
  import gradio as gr
3
- from smolagents import CodeAgent,HfApiModel # Replace with your actual import if different
4
 
5
- # Step 1: Set up your smolagents agent
6
- def create_agent():
7
- """
8
- Initialize and return the agent.
9
- Adjust parameters like model type or configuration as needed.
10
- """
11
- # For example, we initialize an Agent with a sample model
12
- agent = CodeAgent(tools=[], model=HfApiModel(model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/')) # Change arguments as per your agent configuration
13
- return agent
14
-
15
- # Create the agent instance once so that it persists across user interactions
16
- agent = create_agent()
17
 
18
- # Step 2: Define a function that uses the agent to process user input
19
- def process_input(user_input):
20
  """
21
- This function receives user input from the Gradio interface,
22
- processes it with the smolagents agent, and returns the agent's response.
23
  """
24
- # Use your agent's method to generate a response; here we assume a 'run' method exists.
25
- response = agent.run(user_input)
26
- return response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- # Step 3: Build the Gradio interface
29
- iface = gr.Interface(
30
- fn=process_input, # This is the function Gradio will call when a user submits input.
31
- inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
32
- outputs="text",
33
- title="Smolagents Agent via Gradio",
34
- description="This interface integrates a smolagents-based agent with Gradio to process text inputs."
 
 
 
 
 
 
 
 
35
  )
36
 
37
- # Step 4: Launch the Gradio app
38
  if __name__ == "__main__":
39
- iface.launch()
 
 
1
  import gradio as gr
2
+ from smolagents import Agent # adjust the import to your actual smolagents module
3
 
4
+ # Step 1: Initialize your smolagents agent.
5
+ # Replace "zephyr-7b-beta" with your desired model name/configuration.
6
+ agent = Agent(model="zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
7
 
8
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
 
9
  """
10
+ This function builds the conversation history, calls the smolagents agent,
11
+ and streams the response back to Gradio.
12
  """
13
+ # Build the conversation messages list, starting with the system prompt.
14
+ messages = [{"role": "system", "content": system_message}]
15
+ for user_msg, assistant_msg in history:
16
+ if user_msg:
17
+ messages.append({"role": "user", "content": user_msg})
18
+ if assistant_msg:
19
+ messages.append({"role": "assistant", "content": assistant_msg})
20
+ # Add the latest user input.
21
+ messages.append({"role": "user", "content": message})
22
+
23
+ # Initialize an empty response.
24
+ complete_response = ""
25
+
26
+ # Step 2: Call the agent's chat_completion method.
27
+ # If your smolagents agent supports streaming (i.e. yielding tokens as they are generated),
28
+ # this loop will yield partial responses to update the UI.
29
+ # If streaming is not supported, you can simply do:
30
+ # complete_response = agent.chat_completion(messages, max_tokens, temperature, top_p)
31
+ # yield complete_response
32
+ for token in agent.chat_completion(
33
+ messages,
34
+ max_tokens=max_tokens,
35
+ temperature=temperature,
36
+ top_p=top_p,
37
+ stream=True # set to False if your agent does not support streaming
38
+ ):
39
+ complete_response += token
40
+ yield complete_response
41
 
42
+ # Step 3: Create the Gradio ChatInterface.
43
+ demo = gr.ChatInterface(
44
+ fn=respond,
45
+ additional_inputs=[
46
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
47
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
48
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
49
+ gr.Slider(
50
+ minimum=0.1,
51
+ maximum=1.0,
52
+ value=0.95,
53
+ step=0.05,
54
+ label="Top-p (nucleus sampling)"
55
+ ),
56
+ ],
57
  )
58
 
59
+ # Step 4: Launch the Gradio app.
60
  if __name__ == "__main__":
61
+ demo.launch()