Spaces:
Sleeping
Sleeping
File size: 2,753 Bytes
7bbce45 42a1748 d10bbd6 42a1748 d10bbd6 c7d77fa d10bbd6 c7d77fa d10bbd6 c7d77fa d10bbd6 c7d77fa 7bbce45 c7d77fa 7bbce45 c7d77fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import gradio as gr
from smolagents import CodeAgent,HfApiModel # adjust the import to your actual smolagents module
# Step 1: Set up your smolagents agent
def create_agent():
"""
Initialize and return the agent.
Adjust parameters like model type or configuration as needed.
"""
# For example, we initialize an Agent with a sample model
agent = CodeAgent(tools=[], model=HfApiModel(model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/')) # Change arguments as per your agent configuration
return agent
# Create the agent instance once so that it persists across user interactions
agent = create_agent()
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
"""
This function builds the conversation history, calls the smolagents agent,
and streams the response back to Gradio.
"""
# Build the conversation messages list, starting with the system prompt.
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add the latest user input.
messages.append({"role": "user", "content": message})
# Initialize an empty response.
complete_response = ""
# Step 2: Call the agent's chat_completion method.
# If your smolagents agent supports streaming (i.e. yielding tokens as they are generated),
# this loop will yield partial responses to update the UI.
# If streaming is not supported, you can simply do:
# complete_response = agent.chat_completion(messages, max_tokens, temperature, top_p)
# yield complete_response
for token in agent.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True # set to False if your agent does not support streaming
):
complete_response += token
yield complete_response
# Step 3: Create the Gradio ChatInterface.
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
)
# Step 4: Launch the Gradio app.
if __name__ == "__main__":
demo.launch()
|