Spaces:
Runtime error
Runtime error
# Distilled Stable Diffusion inference | |
[[open-in-colab]] | |
Stable Diffusion inference can be a computationally intensive process because it must iteratively denoise the latents to generate an image. To reduce the computational burden, you can use a *distilled* version of the Stable Diffusion model from [Nota AI](https://huggingface.co/nota-ai). The distilled version of their Stable Diffusion model eliminates some of the residual and attention blocks from the UNet, reducing the model size by 51% and improving latency on CPU/GPU by 43%. | |
<Tip> | |
Read this [blog post](https://huggingface.co/blog/sd_distillation) to learn more about how knowledge distillation training works to produce a faster, smaller, and cheaper generative model. | |
</Tip> | |
Let's load the distilled Stable Diffusion model and compare it against the original Stable Diffusion model: | |
```py | |
from diffusers import StableDiffusionPipeline | |
import torch | |
distilled = StableDiffusionPipeline.from_pretrained( | |
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True, | |
).to("cuda") | |
original = StableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, use_safetensors=True, | |
).to("cuda") | |
``` | |
Given a prompt, get the inference time for the original model: | |
```py | |
import time | |
seed = 2023 | |
generator = torch.manual_seed(seed) | |
NUM_ITERS_TO_RUN = 3 | |
NUM_INFERENCE_STEPS = 25 | |
NUM_IMAGES_PER_PROMPT = 4 | |
prompt = "a golden vase with different flowers" | |
start = time.time_ns() | |
for _ in range(NUM_ITERS_TO_RUN): | |
images = original( | |
prompt, | |
num_inference_steps=NUM_INFERENCE_STEPS, | |
generator=generator, | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT | |
).images | |
end = time.time_ns() | |
original_sd = f"{(end - start) / 1e6:.1f}" | |
print(f"Execution time -- {original_sd} ms\n") | |
"Execution time -- 45781.5 ms" | |
``` | |
Time the distilled model inference: | |
```py | |
start = time.time_ns() | |
for _ in range(NUM_ITERS_TO_RUN): | |
images = distilled( | |
prompt, | |
num_inference_steps=NUM_INFERENCE_STEPS, | |
generator=generator, | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT | |
).images | |
end = time.time_ns() | |
distilled_sd = f"{(end - start) / 1e6:.1f}" | |
print(f"Execution time -- {distilled_sd} ms\n") | |
"Execution time -- 29884.2 ms" | |
``` | |
<div class="flex gap-4"> | |
<div> | |
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/original_sd.png"/> | |
<figcaption class="mt-2 text-center text-sm text-gray-500">original Stable Diffusion (45781.5 ms)</figcaption> | |
</div> | |
<div> | |
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/distilled_sd.png"/> | |
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion (29884.2 ms)</figcaption> | |
</div> | |
</div> | |
## Tiny AutoEncoder | |
To speed inference up even more, use a tiny distilled version of the [Stable Diffusion VAE](https://huggingface.co/sayakpaul/taesdxl-diffusers) to denoise the latents into images. Replace the VAE in the distilled Stable Diffusion model with the tiny VAE: | |
```py | |
from diffusers import AutoencoderTiny | |
distilled.vae = AutoencoderTiny.from_pretrained( | |
"sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True, | |
).to("cuda") | |
``` | |
Time the distilled model and distilled VAE inference: | |
```py | |
start = time.time_ns() | |
for _ in range(NUM_ITERS_TO_RUN): | |
images = distilled( | |
prompt, | |
num_inference_steps=NUM_INFERENCE_STEPS, | |
generator=generator, | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT | |
).images | |
end = time.time_ns() | |
distilled_tiny_sd = f"{(end - start) / 1e6:.1f}" | |
print(f"Execution time -- {distilled_tiny_sd} ms\n") | |
"Execution time -- 27165.7 ms" | |
``` | |
<div class="flex justify-center"> | |
<div> | |
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/distilled_sd_vae.png" /> | |
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion + Tiny AutoEncoder (27165.7 ms)</figcaption> | |
</div> | |
</div> | |