Spaces:
Runtime error
Runtime error
File size: 4,146 Bytes
a63d2a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Distilled Stable Diffusion inference
[[open-in-colab]]
Stable Diffusion inference can be a computationally intensive process because it must iteratively denoise the latents to generate an image. To reduce the computational burden, you can use a *distilled* version of the Stable Diffusion model from [Nota AI](https://huggingface.co/nota-ai). The distilled version of their Stable Diffusion model eliminates some of the residual and attention blocks from the UNet, reducing the model size by 51% and improving latency on CPU/GPU by 43%.
<Tip>
Read this [blog post](https://huggingface.co/blog/sd_distillation) to learn more about how knowledge distillation training works to produce a faster, smaller, and cheaper generative model.
</Tip>
Let's load the distilled Stable Diffusion model and compare it against the original Stable Diffusion model:
```py
from diffusers import StableDiffusionPipeline
import torch
distilled = StableDiffusionPipeline.from_pretrained(
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True,
).to("cuda")
original = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, use_safetensors=True,
).to("cuda")
```
Given a prompt, get the inference time for the original model:
```py
import time
seed = 2023
generator = torch.manual_seed(seed)
NUM_ITERS_TO_RUN = 3
NUM_INFERENCE_STEPS = 25
NUM_IMAGES_PER_PROMPT = 4
prompt = "a golden vase with different flowers"
start = time.time_ns()
for _ in range(NUM_ITERS_TO_RUN):
images = original(
prompt,
num_inference_steps=NUM_INFERENCE_STEPS,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT
).images
end = time.time_ns()
original_sd = f"{(end - start) / 1e6:.1f}"
print(f"Execution time -- {original_sd} ms\n")
"Execution time -- 45781.5 ms"
```
Time the distilled model inference:
```py
start = time.time_ns()
for _ in range(NUM_ITERS_TO_RUN):
images = distilled(
prompt,
num_inference_steps=NUM_INFERENCE_STEPS,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT
).images
end = time.time_ns()
distilled_sd = f"{(end - start) / 1e6:.1f}"
print(f"Execution time -- {distilled_sd} ms\n")
"Execution time -- 29884.2 ms"
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/original_sd.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original Stable Diffusion (45781.5 ms)</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/distilled_sd.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion (29884.2 ms)</figcaption>
</div>
</div>
## Tiny AutoEncoder
To speed inference up even more, use a tiny distilled version of the [Stable Diffusion VAE](https://huggingface.co/sayakpaul/taesdxl-diffusers) to denoise the latents into images. Replace the VAE in the distilled Stable Diffusion model with the tiny VAE:
```py
from diffusers import AutoencoderTiny
distilled.vae = AutoencoderTiny.from_pretrained(
"sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True,
).to("cuda")
```
Time the distilled model and distilled VAE inference:
```py
start = time.time_ns()
for _ in range(NUM_ITERS_TO_RUN):
images = distilled(
prompt,
num_inference_steps=NUM_INFERENCE_STEPS,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT
).images
end = time.time_ns()
distilled_tiny_sd = f"{(end - start) / 1e6:.1f}"
print(f"Execution time -- {distilled_tiny_sd} ms\n")
"Execution time -- 27165.7 ms"
```
<div class="flex justify-center">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/distilled_sd_vae.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion + Tiny AutoEncoder (27165.7 ms)</figcaption>
</div>
</div>
|