Spaces:
Running
Running
File size: 32,104 Bytes
f1a05f0 94c4974 f1a05f0 7e6b7ab cb2582c 349da64 f1a05f0 be22e58 94c4974 cb2582c f1a05f0 bf08a37 f1a05f0 94c4974 cb2582c 349da64 cb2582c 7a7e12d d256587 7a7e12d 94c4974 efaee2f 7a7e12d f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 0b28ec1 f1a05f0 0b28ec1 f1a05f0 fc65614 f1a05f0 fc65614 f1a05f0 7a7e12d 94c4974 7a7e12d 94c4974 0e0a395 549e657 99ef2e5 f1a05f0 2f4d425 6727cff c69a6bc fc65614 94c4974 f40394a 24ebbe7 fc65614 f41220b f40394a b1a3032 549e657 fc65614 cb2582c fc65614 cb2582c 94c4974 fc65614 be22e58 584c35f be22e58 549e657 be22e58 cb2582c be22e58 fc65614 520e8b2 fc65614 100ddf0 fc65614 94c4974 f40394a 24ebbe7 fc65614 b1a3032 f40394a b1a3032 fc65614 75ea547 f1a05f0 fc65614 cb2582c fc65614 f1a05f0 fc65614 cb2582c 75b6e6e be22e58 f1a05f0 fc65614 f1a05f0 be22e58 300ca95 be22e58 cb2582c be22e58 300ca95 be22e58 f1a05f0 fc65614 a73f2f6 f41220b f40394a a73f2f6 fc65614 f40394a 92febc2 f40394a fc65614 f40394a fc65614 623c312 549e657 a6f5b90 92febc2 a73f2f6 fc65614 623c312 549e657 a6f5b90 92febc2 a73f2f6 fc65614 623c312 549e657 fc65614 92febc2 fc65614 a6f5b90 00f24f4 cb2582c a73f2f6 fc65614 a73f2f6 cb2582c fc65614 cb2582c 31e0e43 a73f2f6 fc65614 94c4974 549e657 f8d86a0 94c4974 fc65614 cb2582c f21f907 a73f2f6 f40394a fc65614 00f24f4 f40394a 24ebbe7 f40394a 24ebbe7 f40394a fc65614 a73f2f6 f40394a 9d5309a a73f2f6 fc65614 cb2582c fc65614 a73f2f6 cb2582c fc65614 a73f2f6 cb2582c a73f2f6 fc65614 cb2582c 31e0e43 a73f2f6 fc65614 94c4974 db72c71 f8d86a0 94c4974 fc65614 cb2582c f21f907 a73f2f6 f40394a fc65614 00f24f4 f40394a 00f24f4 24ebbe7 f40394a 24ebbe7 f40394a fc65614 a73f2f6 f40394a a73f2f6 fc65614 cb2582c fc65614 00f24f4 fc65614 cbd8e4c 6727cff 00f24f4 99ef2e5 7a7e12d efaee2f 7a7e12d efaee2f 7a7e12d 00f24f4 fc65614 24ebbe7 94c4974 24ebbe7 00f24f4 fc65614 9d5309a 660f849 457544c fc65614 cbd8e4c f1a05f0 7a7e12d efaee2f 7a7e12d efaee2f 7a7e12d fc65614 94c4974 fc65614 24ebbe7 00f24f4 cbd8e4c fc65614 9d5309a 660f849 457544c f1a05f0 00f24f4 bc0163b 21ee4dd 549e657 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 |
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import pipeline
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
# sacremoses μ€μΉ νμΈ
try:
import sacremoses
except ImportError:
print("Installing sacremoses...")
import subprocess
subprocess.check_call(["pip", "install", "sacremoses"])
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
from openai import OpenAI
import re
# Load system prompts
system_prompt_t2v = """λΉμ μ λΉλμ€ μμ±μ μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
μ£Όμ΄μ§ ν둬ννΈλ₯Ό λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ."""
system_prompt_i2v = """λΉμ μ μ΄λ―Έμ§ κΈ°λ° λΉλμ€ μμ±μ μν ν둬ννΈ μ λ¬Έκ°μ
λλ€.
μ£Όμ΄μ§ ν둬ννΈλ₯Ό λ€μ ꡬ쑰μ λ§κ² κ°μ ν΄μ£ΌμΈμ:
1. μ£Όμ λμμ λͺ
νν ν λ¬Έμ₯μΌλ‘ μμ
2. ꡬ체μ μΈ λμκ³Ό μ μ€μ²λ₯Ό μκ° μμλλ‘ μ€λͺ
3. μΊλ¦ν°/κ°μ²΄μ μΈλͺ¨λ₯Ό μμΈν λ¬μ¬
4. λ°°κ²½κ³Ό νκ²½ μΈλΆ μ¬νμ ꡬ체μ μΌλ‘ ν¬ν¨
5. μΉ΄λ©λΌ κ°λμ μμ§μμ λͺ
μ
6. μ‘°λͺ
κ³Ό μμμ μμΈν μ€λͺ
7. λ³νλ κ°μμ€λ¬μ΄ μ¬κ±΄μ μμ°μ€λ½κ² ν¬ν¨
λͺ¨λ μ€λͺ
μ νλμ μμ°μ€λ¬μ΄ λ¬Έλ¨μΌλ‘ μμ±νκ³ ,
촬μ κ°λ
μ΄ μ΄¬μ λͺ©λ‘μ μ€λͺ
νλ κ²μ²λΌ ꡬ체μ μ΄κ³ μκ°μ μΌλ‘ μμ±νμΈμ.
200λ¨μ΄λ₯Ό λμ§ μλλ‘ νλ, μ΅λν μμΈνκ² μμ±νμΈμ."""
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)
# Initialize translation pipeline with device and clean_up settings
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
translator = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device,
clean_up_tokenization_spaces=True
)
# Korean text detection function
def contains_korean(text):
korean_pattern = re.compile('[γ±-γ
γ
-γ
£κ°-ν£]')
return bool(korean_pattern.search(text))
def translate_korean_prompt(prompt):
"""
Translate Korean prompt to English if Korean text is detected
"""
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
print(f"Original Korean prompt: {prompt}")
print(f"Translated English prompt: {translated}")
return translated
return prompt
def enhance_prompt(prompt, type="t2v"):
system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=2000,
)
enhanced_prompt = response.choices[0].message.content.strip()
print("\n=== ν둬ννΈ μ¦κ° κ²°κ³Ό ===")
print("Original Prompt:")
print(prompt)
print("\nEnhanced Prompt:")
print(enhanced_prompt)
print("========================\n")
return enhanced_prompt
except Exception as e:
print(f"Error during prompt enhancement: {e}")
return prompt
def update_prompt_t2v(prompt, enhance_toggle):
return update_prompt(prompt, enhance_toggle, "t2v")
def update_prompt_i2v(prompt, enhance_toggle):
return update_prompt(prompt, enhance_toggle, "i2v")
def update_prompt(prompt, enhance_toggle, type="t2v"):
if enhance_toggle:
return enhance_prompt(prompt, type)
return prompt
# Set model download directory within Hugging Face Spaces
model_path = "asset"
if not os.path.exists(model_path):
snapshot_download(
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.to(device=device, dtype=torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device=device, dtype=torch.bfloat16)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Helper function for image processing
def center_crop_and_resize(frame, target_height, target_width):
h, w, _ = frame.shape
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = w / h
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(h * aspect_ratio_target)
x_start = (w - new_width) // 2
frame_cropped = frame[:, x_start : x_start + new_width]
else:
new_height = int(w / aspect_ratio_target)
y_start = (h - new_height) // 2
frame_cropped = frame[y_start : y_start + new_height, :]
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
return frame_resized
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image)
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
return frame_tensor.unsqueeze(0).unsqueeze(2)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to(device)
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)
pipeline = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(device)
# State λ³μλ€μ μ΄κΈ°ν μμ
txt2vid_current_height = gr.State(value=320)
txt2vid_current_width = gr.State(value=512)
txt2vid_current_num_frames = gr.State(value=257)
img2vid_current_height = gr.State(value=320)
img2vid_current_width = gr.State(value=512)
img2vid_current_num_frames = gr.State(value=257)
# Preset options for resolution and frame configuration
# Convert frames to seconds assuming 25 FPS
preset_options = [
{"label": "[16:9 HD] 1216x704, 1.6μ΄", "width": 1216, "height": 704, "num_frames": 41},
{"label": "[16:9] 1088x704, 2.0μ΄", "width": 1088, "height": 704, "num_frames": 49},
{"label": "[16:9] 1056x640, 2.3μ΄", "width": 1056, "height": 640, "num_frames": 57},
{"label": "[16:9] 992x608, 2.6μ΄", "width": 992, "height": 608, "num_frames": 65},
{"label": "[16:9] 896x608, 2.9μ΄", "width": 896, "height": 608, "num_frames": 73},
{"label": "[16:9] 896x544, 3.2μ΄", "width": 896, "height": 544, "num_frames": 81},
{"label": "[16:9] 832x544, 3.6μ΄", "width": 832, "height": 544, "num_frames": 89},
{"label": "[16:9] 800x512, 3.9μ΄", "width": 800, "height": 512, "num_frames": 97},
{"label": "[16:9] 768x512, 3.9μ΄", "width": 768, "height": 512, "num_frames": 97},
{"label": "[16:9] 800x480, 4.2μ΄", "width": 800, "height": 480, "num_frames": 105},
{"label": "[16:9] 736x480, 4.5μ΄", "width": 736, "height": 480, "num_frames": 113},
{"label": "[3:2] 704x480, 4.8μ΄", "width": 704, "height": 480, "num_frames": 121},
{"label": "[16:9] 704x448, 5.2μ΄", "width": 704, "height": 448, "num_frames": 129},
{"label": "[16:9] 672x448, 5.5μ΄", "width": 672, "height": 448, "num_frames": 137},
{"label": "[16:9] 640x416, 6.1μ΄", "width": 640, "height": 416, "num_frames": 153},
{"label": "[16:9] 672x384, 6.4μ΄", "width": 672, "height": 384, "num_frames": 161},
{"label": "[16:9] 640x384, 6.8μ΄", "width": 640, "height": 384, "num_frames": 169},
{"label": "[16:9] 608x384, 7.1μ΄", "width": 608, "height": 384, "num_frames": 177},
{"label": "[16:9] 576x384, 7.4μ΄", "width": 576, "height": 384, "num_frames": 185},
{"label": "[16:9] 608x352, 7.7μ΄", "width": 608, "height": 352, "num_frames": 193},
{"label": "[16:9] 576x352, 8.0μ΄", "width": 576, "height": 352, "num_frames": 201},
{"label": "[16:9] 544x352, 8.4μ΄", "width": 544, "height": 352, "num_frames": 209},
{"label": "[3:2] 512x352, 9.3μ΄", "width": 512, "height": 352, "num_frames": 233},
{"label": "[16:9] 544x320, 9.6μ΄", "width": 544, "height": 320, "num_frames": 241},
{"label": "[16:9] 512x320, 10.3μ΄", "width": 512, "height": 320, "num_frames": 257},
]
def preset_changed(preset):
selected = next(item for item in preset_options if item["label"] == preset)
return [
selected["height"],
selected["width"],
selected["num_frames"],
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
]
def generate_video_from_text(
prompt="",
enhance_prompt_toggle=False,
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
frame_rate=25,
seed=171198,
num_inference_steps=41,
guidance_scale=4,
height=320,
width=512,
num_frames=257,
progress=gr.Progress(),
):
if len(prompt.strip()) < 50:
raise gr.Error(
"ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€. λ μμΈν μ€λͺ
μ μ 곡ν΄μ£ΌμΈμ.",
duration=5,
)
# Translate Korean prompts to English
prompt = translate_korean_prompt(prompt)
negative_prompt = translate_korean_prompt(negative_prompt)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.UNCONDITIONAL,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
except Exception as e:
raise gr.Error(
f"λΉλμ€ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ. μ€λ₯: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
output_path = tempfile.mktemp(suffix=".mp4")
print(images.shape)
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
del images
del video_np
torch.cuda.empty_cache()
return output_path
def generate_video_from_image(
image_path,
prompt="",
enhance_prompt_toggle=False,
negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
frame_rate=25,
seed=171198,
num_inference_steps=41,
guidance_scale=4,
height=320,
width=512,
num_frames=257,
progress=gr.Progress(),
):
print("Height: ", height)
print("Width: ", width)
print("Num Frames: ", num_frames)
if len(prompt.strip()) < 50:
raise gr.Error(
"ν둬ννΈλ μ΅μ 50μ μ΄μμ΄μ΄μΌ ν©λλ€. λ μμΈν μ€λͺ
μ μ 곡ν΄μ£ΌμΈμ.",
duration=5,
)
if not image_path:
raise gr.Error("μ
λ ₯ μ΄λ―Έμ§λ₯Ό μ 곡ν΄μ£ΌμΈμ.", duration=5)
# Translate Korean prompts to English
prompt = translate_korean_prompt(prompt)
negative_prompt = translate_korean_prompt(negative_prompt)
media_items = (
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": media_items,
}
generator = torch.Generator(device="cpu").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.FIRST_FRAME,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
except Exception as e:
raise gr.Error(
f"λΉλμ€ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€. λ€μ μλν΄μ£ΌμΈμ. μ€λ₯: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
return output_path
def create_advanced_options():
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=1000000,
step=1,
value=171198
)
inference_steps = gr.Slider(
label="4.2 Inference Steps",
minimum=1,
maximum=50,
step=1,
value=41,
visible=False
)
guidance_scale = gr.Slider(
label="4.3 Guidance Scale",
minimum=1.0,
maximum=5.0,
step=0.1,
value=4.0,
visible=False
)
height_slider = gr.Slider(
label="4.4 Height",
minimum=256,
maximum=1024,
step=64,
value=320,
visible=False,
)
width_slider = gr.Slider(
label="4.5 Width",
minimum=256,
maximum=1024,
step=64,
value=512,
visible=False,
)
num_frames_slider = gr.Slider(
label="4.5 Number of Frames",
minimum=1,
maximum=200,
step=1,
value=257,
visible=False,
)
return [
seed,
inference_steps,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
]
# μλλ¦¬μ€ λΆμ λ° ν둬ννΈ μμ±μ μν μμ€ν
ν둬ννΈ
system_prompt_scenario = """λΉμ μ μμ μλ리μ€λ₯Ό 5κ°μ μΉμ
μΌλ‘ λλκ³ κ°κ°μ λν λΉλμ€ μμ± ν둬ννΈλ₯Ό μμ±νλ μ λ¬Έκ°μ
λλ€.
μ£Όμ΄μ§ μλ리μ€λ₯Ό λ€μ 5κ° μΉμ
μΌλ‘ λλμ΄ κ°κ°μ ν둬ννΈλ₯Ό μμ±ν΄μ£ΌμΈμ:
1. λ°°κ²½ λ° νμμ±: μ£Όμ μ λ°°κ²½κ³Ό μ€μμ±μ μκ°μ μΌλ‘ νν
2. λ¬Έμ μ κΈ° λ° ν₯λ―Έ μ λ°: ν΅μ¬ λ¬Έμ λ ν₯λ―Έλ‘μ΄ ν¬μΈνΈλ₯Ό λλΌλ§ν±νκ² νν
3. ν΄κ²°μ±
μ μ: μ£Όμ ν΄κ²°λ°©μμ΄λ μ κ·Όλ²μ μκ°μ μΌλ‘ μ μ
4. λ³Έλ‘ : ν΅μ¬ λ΄μ©μ μμΈν μ€λͺ
νλ μκ°μ νν
5. κ²°λ‘ λ° κ°μ‘°: μ£Όμ ν¬μΈνΈλ₯Ό λ€μ νλ² κ°μ‘°νκ³ λ§λ¬΄λ¦¬
κ° μΉμ
μ ν둬ννΈλ λ€μ μμλ₯Ό ν¬ν¨ν΄μΌ ν©λλ€:
- μ£Όμ μκ°μ μμμ λμ
- μΉ΄λ©λΌ μμ§μκ³Ό μ΅κΈ
- μ₯λ©΄ μ νκ³Ό ν¨κ³Ό
- λΆμκΈ°μ ν€
- λ±μ₯ μμλ€μ μΈλΆ λ¬μ¬
κ° μΉμ
μ 10μ΄ λΆλμ μμμ μμ±ν μ μλλ‘ κ΅¬μ²΄μ μ΄κ³ μκ°μ μΈ μ€λͺ
μ ν¬ν¨ν΄μΌ ν©λλ€."""
def analyze_scenario(scenario):
"""μλ리μ€λ₯Ό λΆμνμ¬ 5κ°μ μΉμ
μΌλ‘ λλκ³ κ°κ°μ ν둬ννΈλ₯Ό μμ±"""
messages = [
{"role": "system", "content": system_prompt_scenario},
{"role": "user", "content": scenario},
]
try:
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=messages,
max_tokens=2000,
)
prompts = response.choices[0].message.content.strip().split("\n\n")
# 5κ°μ μΉμ
μΌλ‘ μ 리
section_prompts = []
current_section = ""
for line in prompts:
if line.strip():
if any(section in line for section in ["1.", "2.", "3.", "4.", "5."]):
if current_section:
section_prompts.append(current_section)
current_section = line
else:
current_section += "\n" + line
if current_section:
section_prompts.append(current_section)
# μ νν 5κ°μ μΉμ
μ΄ λλλ‘ μ‘°μ
while len(section_prompts) < 5:
section_prompts.append("μΆκ° μΉμ
μ΄ νμν©λλ€.")
return section_prompts[:5]
except Exception as e:
print(f"Error during scenario analysis: {e}")
return ["Error occurred during analysis"] * 5
def generate_section_video(prompt, preset, progress=gr.Progress()):
"""κ° μΉμ
μ λΉλμ€ μμ±"""
selected = next(item for item in preset_options if item["label"] == preset)
return generate_video_from_text(
prompt=prompt,
height=selected["height"],
width=selected["width"],
num_frames=selected["num_frames"],
progress=progress
)
# Gradio Interface Definition
with gr.Blocks(theme=gr.themes.Soft()) as iface:
with gr.Tabs():
# Text to Video Tab
with gr.TabItem("ν
μ€νΈλ‘ λΉλμ€ λ§λ€κΈ°"):
with gr.Row():
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Step 1: ν둬ννΈ μ
λ ₯",
placeholder="μμ±νκ³ μΆμ λΉλμ€λ₯Ό μ€λͺ
νμΈμ (μ΅μ 50μ)...",
value="κ·μ¬μ΄ κ³ μμ΄",
lines=5,
)
txt2vid_enhance_toggle = Toggle(
label="ν둬ννΈ κ°μ ",
value=False,
interactive=True,
)
txt2vid_negative_prompt = gr.Textbox(
label="Step 2: λ€κ±°ν°λΈ ν둬ννΈ μ
λ ₯",
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ
νμΈμ...",
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
lines=2,
visible=False
)
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3μ΄",
label="Step 2: ν΄μλ ν리μ
μ ν",
)
txt2vid_frame_rate = gr.Slider(
label="Step 3: νλ μ λ μ΄νΈ",
minimum=21,
maximum=30,
step=1,
value=25,
visible=False
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button(
"Step 3: λΉλμ€ μμ±",
variant="primary",
size="lg",
)
with gr.Column():
txt2vid_output = gr.Video(label="μμ±λ λΉλμ€")
# Image to Video Tab
with gr.TabItem("μ΄λ―Έμ§λ‘ λΉλμ€ λ§λ€κΈ°"):
with gr.Row():
with gr.Column():
img2vid_image = gr.Image(
type="filepath",
label="Step 1: μ
λ ₯ μ΄λ―Έμ§ μ
λ‘λ",
elem_id="image_upload",
)
img2vid_prompt = gr.Textbox(
label="Step 2: ν둬ννΈ μ
λ ₯",
placeholder="μ΄λ―Έμ§λ₯Ό μ΄λ»κ² μ λλ©μ΄μ
νν μ§ μ€λͺ
νμΈμ (μ΅μ 50μ)...",
value="κ·μ¬μ΄ κ³ μμ΄",
lines=5,
)
img2vid_enhance_toggle = Toggle(
label="ν둬ννΈ μ¦κ°",
value=False,
interactive=True,
)
img2vid_negative_prompt = gr.Textbox(
label="Step 3: λ€κ±°ν°λΈ ν둬ννΈ μ
λ ₯",
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ
νμΈμ...",
value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
lines=2,
visible=False
)
img2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3μ΄",
label="Step 3: ν΄μλ ν리μ
μ ν",
)
img2vid_frame_rate = gr.Slider(
label="Step 4: νλ μ λ μ΄νΈ",
minimum=21,
maximum=30,
step=1,
value=25,
visible=False
)
img2vid_advanced = create_advanced_options()
img2vid_generate = gr.Button(
"Step 4: λΉλμ€ μμ±",
variant="primary",
size="lg",
)
with gr.Column():
img2vid_output = gr.Video(label="μμ±λ λΉλμ€")
# Scenario to Video Tab (New)
with gr.TabItem("μλ리μ€λ‘ λΉλμ€ λ§λ€κΈ°(μνΌ)"):
with gr.Row():
with gr.Column(scale=1):
scenario_input = gr.Textbox(
label="μμ μ€ν¬λ¦½νΈ μ
λ ₯",
placeholder="μ 체 μλ리μ€λ₯Ό μ
λ ₯νμΈμ...",
lines=10
)
scenario_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="[16:9] 512x320, 10.3μ΄",
label="νλ©΄ ν¬κΈ° μ ν"
)
analyze_btn = gr.Button("μλλ¦¬μ€ λΆμ λ° ν둬ννΈ μμ±", variant="primary")
with gr.Column(scale=2):
with gr.Row():
# μΉμ
1
with gr.Column():
section1_prompt = gr.Textbox(
label="1. λ°°κ²½ λ° νμμ±",
lines=4
)
section1_generate = gr.Button("μμ±")
section1_video = gr.Video(label="μΉμ
1 μμ")
# μΉμ
2
with gr.Column():
section2_prompt = gr.Textbox(
label="2. λ¬Έμ μ κΈ° λ° ν₯λ―Έ μ λ°",
lines=4
)
section2_generate = gr.Button("μμ±")
section2_video = gr.Video(label="μΉμ
2 μμ")
with gr.Row():
# μΉμ
3
with gr.Column():
section3_prompt = gr.Textbox(
label="3. ν΄κ²°μ±
μ μ",
lines=4
)
section3_generate = gr.Button("μμ±")
section3_video = gr.Video(label="μΉμ
3 μμ")
# μΉμ
4
with gr.Column():
section4_prompt = gr.Textbox(
label="4. λ³Έλ‘ ",
lines=4
)
section4_generate = gr.Button("μμ±")
section4_video = gr.Video(label="μΉμ
4 μμ")
with gr.Row():
# μΉμ
5
with gr.Column():
section5_prompt = gr.Textbox(
label="5. κ²°λ‘ λ° κ°μ‘°",
lines=4
)
section5_generate = gr.Button("μμ±")
section5_video = gr.Video(label="μΉμ
5 μμ")
# Event handlers
txt2vid_preset.change(
fn=preset_changed,
inputs=[txt2vid_preset],
outputs=[
txt2vid_current_height,
txt2vid_current_width,
txt2vid_current_num_frames,
*txt2vid_advanced[3:]
]
)
txt2vid_enhance_toggle.change(
fn=update_prompt_t2v,
inputs=[txt2vid_prompt, txt2vid_enhance_toggle],
outputs=txt2vid_prompt
)
txt2vid_generate.click(
fn=generate_video_from_text,
inputs=[
txt2vid_prompt,
txt2vid_enhance_toggle,
txt2vid_negative_prompt,
txt2vid_frame_rate,
*txt2vid_advanced[:3],
txt2vid_current_height,
txt2vid_current_width,
txt2vid_current_num_frames,
],
outputs=txt2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
img2vid_preset.change(
fn=preset_changed,
inputs=[img2vid_preset],
outputs=[
img2vid_current_height,
img2vid_current_width,
img2vid_current_num_frames,
*img2vid_advanced[3:]
]
)
img2vid_enhance_toggle.change(
fn=update_prompt_i2v,
inputs=[img2vid_prompt, img2vid_enhance_toggle],
outputs=img2vid_prompt
)
img2vid_generate.click(
fn=generate_video_from_image,
inputs=[
img2vid_image,
img2vid_prompt,
img2vid_enhance_toggle,
img2vid_negative_prompt,
img2vid_frame_rate,
*img2vid_advanced[:3],
img2vid_current_height,
img2vid_current_width,
img2vid_current_num_frames,
],
outputs=img2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
# Scenario tab event handlers
analyze_btn.click(
fn=analyze_scenario,
inputs=[scenario_input],
outputs=[
section1_prompt, section2_prompt, section3_prompt,
section4_prompt, section5_prompt
]
)
section1_generate.click(
fn=generate_section_video,
inputs=[section1_prompt, scenario_preset],
outputs=section1_video
)
section2_generate.click(
fn=generate_section_video,
inputs=[section2_prompt, scenario_preset],
outputs=section2_video
)
section3_generate.click(
fn=generate_section_video,
inputs=[section3_prompt, scenario_preset],
outputs=section3_video
)
section4_generate.click(
fn=generate_section_video,
inputs=[section4_prompt, scenario_preset],
outputs=section4_video
)
section5_generate.click(
fn=generate_section_video,
inputs=[section5_prompt, scenario_preset],
outputs=section5_video
)
if __name__ == "__main__":
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
share=True, show_api=False
) |