File size: 32,104 Bytes
f1a05f0
94c4974
f1a05f0
7e6b7ab
cb2582c
349da64
 
 
 
 
 
 
 
 
 
 
f1a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be22e58
94c4974
cb2582c
f1a05f0
bf08a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a05f0
 
94c4974
 
cb2582c
349da64
 
 
 
 
 
 
 
cb2582c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7e12d
 
 
 
 
 
 
 
 
 
 
d256587
7a7e12d
 
 
 
 
 
 
 
 
 
 
 
 
 
94c4974
efaee2f
 
 
 
 
 
7a7e12d
 
 
 
f1a05f0
 
 
 
fc65614
 
 
f1a05f0
 
fc65614
 
 
f1a05f0
 
 
 
 
 
fc65614
f1a05f0
 
 
 
0b28ec1
f1a05f0
 
 
 
 
 
 
 
0b28ec1
f1a05f0
 
 
 
 
 
 
 
 
 
 
 
 
 
fc65614
f1a05f0
 
 
fc65614
f1a05f0
 
 
 
 
 
 
 
 
 
 
7a7e12d
 
 
 
 
 
 
 
 
 
 
94c4974
7a7e12d
 
 
 
 
 
 
 
94c4974
0e0a395
 
 
 
 
 
 
 
549e657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ef2e5
f1a05f0
2f4d425
6727cff
 
 
 
 
 
 
 
c69a6bc
fc65614
 
94c4974
f40394a
24ebbe7
fc65614
f41220b
f40394a
b1a3032
 
549e657
fc65614
 
 
 
cb2582c
fc65614
 
 
cb2582c
 
 
94c4974
fc65614
 
 
 
 
 
 
 
 
 
 
 
 
be22e58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584c35f
be22e58
549e657
 
be22e58
 
cb2582c
be22e58
 
 
 
 
fc65614
 
520e8b2
fc65614
 
 
 
 
 
 
 
 
100ddf0
 
 
fc65614
 
 
 
 
94c4974
f40394a
24ebbe7
fc65614
b1a3032
f40394a
b1a3032
 
 
fc65614
 
75ea547
 
 
 
f1a05f0
fc65614
cb2582c
fc65614
 
f1a05f0
fc65614
cb2582c
 
 
 
 
75b6e6e
be22e58
 
 
f1a05f0
 
 
fc65614
 
 
 
f1a05f0
 
 
 
 
 
be22e58
300ca95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be22e58
 
cb2582c
be22e58
 
 
300ca95
 
be22e58
 
f1a05f0
 
fc65614
a73f2f6
 
f41220b
f40394a
 
 
 
a73f2f6
fc65614
f40394a
 
 
 
92febc2
f40394a
fc65614
 
f40394a
 
 
 
 
 
fc65614
 
623c312
549e657
 
a6f5b90
92febc2
a73f2f6
fc65614
 
623c312
549e657
 
a6f5b90
92febc2
a73f2f6
fc65614
 
623c312
549e657
 
fc65614
92febc2
fc65614
 
 
 
 
 
 
 
 
 
 
a6f5b90
00f24f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb2582c
a73f2f6
fc65614
a73f2f6
cb2582c
fc65614
 
 
cb2582c
 
31e0e43
a73f2f6
fc65614
94c4974
549e657
f8d86a0
94c4974
 
 
fc65614
cb2582c
 
f21f907
a73f2f6
f40394a
fc65614
 
 
 
00f24f4
f40394a
24ebbe7
 
 
f40394a
24ebbe7
 
 
 
f40394a
fc65614
 
 
a73f2f6
f40394a
9d5309a
 
a73f2f6
fc65614
 
cb2582c
fc65614
a73f2f6
cb2582c
fc65614
 
a73f2f6
 
cb2582c
a73f2f6
 
fc65614
cb2582c
 
31e0e43
a73f2f6
fc65614
94c4974
db72c71
f8d86a0
94c4974
 
fc65614
cb2582c
 
f21f907
a73f2f6
f40394a
fc65614
 
 
 
00f24f4
f40394a
00f24f4
24ebbe7
 
f40394a
24ebbe7
 
 
 
f40394a
fc65614
 
 
a73f2f6
f40394a
 
 
a73f2f6
fc65614
 
cb2582c
fc65614
00f24f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc65614
cbd8e4c
 
6727cff
 
 
 
 
 
00f24f4
99ef2e5
7a7e12d
efaee2f
7a7e12d
efaee2f
7a7e12d
00f24f4
fc65614
 
24ebbe7
 
94c4974
24ebbe7
 
00f24f4
 
 
 
 
fc65614
9d5309a
660f849
457544c
fc65614
 
 
cbd8e4c
 
 
 
 
 
 
 
f1a05f0
 
7a7e12d
efaee2f
7a7e12d
efaee2f
7a7e12d
 
fc65614
 
 
 
 
94c4974
fc65614
24ebbe7
00f24f4
cbd8e4c
 
 
fc65614
 
9d5309a
660f849
457544c
f1a05f0
 
00f24f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0163b
21ee4dd
 
549e657
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import pipeline
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)

# sacremoses μ„€μΉ˜ 확인
try:
    import sacremoses
except ImportError:
    print("Installing sacremoses...")
    import subprocess
    subprocess.check_call(["pip", "install", "sacremoses"])

from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
from openai import OpenAI
import re

# Load system prompts
system_prompt_t2v = """당신은 λΉ„λ””μ˜€ 생성을 μœ„ν•œ ν”„λ‘¬ν”„νŠΈ μ „λ¬Έκ°€μž…λ‹ˆλ‹€. 
주어진 ν”„λ‘¬ν”„νŠΈλ₯Ό λ‹€μŒ ꡬ쑰에 맞게 κ°œμ„ ν•΄μ£Όμ„Έμš”:
1. μ£Όμš” λ™μž‘μ„ λͺ…ν™•ν•œ ν•œ λ¬Έμž₯으둜 μ‹œμž‘
2. ꡬ체적인 λ™μž‘κ³Ό 제슀처λ₯Ό μ‹œκ°„ μˆœμ„œλŒ€λ‘œ μ„€λͺ…
3. 캐릭터/객체의 μ™Έλͺ¨λ₯Ό μƒμ„Ένžˆ λ¬˜μ‚¬
4. λ°°κ²½κ³Ό ν™˜κ²½ μ„ΈλΆ€ 사항을 ꡬ체적으둜 포함
5. 카메라 각도와 μ›€μ§μž„μ„ λͺ…μ‹œ
6. μ‘°λͺ…κ³Ό 색상을 μžμ„Ένžˆ μ„€λͺ…
7. λ³€ν™”λ‚˜ κ°‘μž‘μŠ€λŸ¬μš΄ 사건을 μžμ—°μŠ€λŸ½κ²Œ 포함
λͺ¨λ“  μ„€λͺ…은 ν•˜λ‚˜μ˜ μžμ—°μŠ€λŸ¬μš΄ λ¬Έλ‹¨μœΌλ‘œ μž‘μ„±ν•˜κ³ , 
촬영 감독이 촬영 λͺ©λ‘μ„ μ„€λͺ…ν•˜λŠ” κ²ƒμ²˜λŸΌ ꡬ체적이고 μ‹œκ°μ μœΌλ‘œ μž‘μ„±ν•˜μ„Έμš”.
200단어λ₯Ό λ„˜μ§€ μ•Šλ„λ‘ ν•˜λ˜, μ΅œλŒ€ν•œ μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜μ„Έμš”."""

system_prompt_i2v = """당신은 이미지 기반 λΉ„λ””μ˜€ 생성을 μœ„ν•œ ν”„λ‘¬ν”„νŠΈ μ „λ¬Έκ°€μž…λ‹ˆλ‹€. 
주어진 ν”„λ‘¬ν”„νŠΈλ₯Ό λ‹€μŒ ꡬ쑰에 맞게 κ°œμ„ ν•΄μ£Όμ„Έμš”:
1. μ£Όμš” λ™μž‘μ„ λͺ…ν™•ν•œ ν•œ λ¬Έμž₯으둜 μ‹œμž‘
2. ꡬ체적인 λ™μž‘κ³Ό 제슀처λ₯Ό μ‹œκ°„ μˆœμ„œλŒ€λ‘œ μ„€λͺ…
3. 캐릭터/객체의 μ™Έλͺ¨λ₯Ό μƒμ„Ένžˆ λ¬˜μ‚¬
4. λ°°κ²½κ³Ό ν™˜κ²½ μ„ΈλΆ€ 사항을 ꡬ체적으둜 포함
5. 카메라 각도와 μ›€μ§μž„μ„ λͺ…μ‹œ
6. μ‘°λͺ…κ³Ό 색상을 μžμ„Ένžˆ μ„€λͺ…
7. λ³€ν™”λ‚˜ κ°‘μž‘μŠ€λŸ¬μš΄ 사건을 μžμ—°μŠ€λŸ½κ²Œ 포함
λͺ¨λ“  μ„€λͺ…은 ν•˜λ‚˜μ˜ μžμ—°μŠ€λŸ¬μš΄ λ¬Έλ‹¨μœΌλ‘œ μž‘μ„±ν•˜κ³ , 
촬영 감독이 촬영 λͺ©λ‘μ„ μ„€λͺ…ν•˜λŠ” κ²ƒμ²˜λŸΌ ꡬ체적이고 μ‹œκ°μ μœΌλ‘œ μž‘μ„±ν•˜μ„Έμš”.
200단어λ₯Ό λ„˜μ§€ μ•Šλ„λ‘ ν•˜λ˜, μ΅œλŒ€ν•œ μƒμ„Έν•˜κ²Œ μž‘μ„±ν•˜μ„Έμš”."""

# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)

# Initialize translation pipeline with device and clean_up settings
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
translator = pipeline(
    "translation", 
    model="Helsinki-NLP/opus-mt-ko-en",
    device=device,
    clean_up_tokenization_spaces=True
)

# Korean text detection function
def contains_korean(text):
    korean_pattern = re.compile('[γ„±-γ…Žγ…-γ…£κ°€-힣]')
    return bool(korean_pattern.search(text))

def translate_korean_prompt(prompt):
    """
    Translate Korean prompt to English if Korean text is detected
    """
    if contains_korean(prompt):
        translated = translator(prompt)[0]['translation_text']
        print(f"Original Korean prompt: {prompt}")
        print(f"Translated English prompt: {translated}")
        return translated
    return prompt

def enhance_prompt(prompt, type="t2v"):
    system_prompt = system_prompt_t2v if type == "t2v" else system_prompt_i2v
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": prompt},
    ]

    try:
        response = client.chat.completions.create(
            model="gpt-4-1106-preview",
            messages=messages,
            max_tokens=2000,
        )
        enhanced_prompt = response.choices[0].message.content.strip()
        
        print("\n=== ν”„λ‘¬ν”„νŠΈ 증강 κ²°κ³Ό ===")
        print("Original Prompt:")
        print(prompt)
        print("\nEnhanced Prompt:")
        print(enhanced_prompt)
        print("========================\n")
        
        return enhanced_prompt
    except Exception as e:
        print(f"Error during prompt enhancement: {e}")
        return prompt

def update_prompt_t2v(prompt, enhance_toggle):
    return update_prompt(prompt, enhance_toggle, "t2v")

def update_prompt_i2v(prompt, enhance_toggle):
    return update_prompt(prompt, enhance_toggle, "i2v")
    
def update_prompt(prompt, enhance_toggle, type="t2v"):
    if enhance_toggle:
        return enhance_prompt(prompt, type)
    return prompt

# Set model download directory within Hugging Face Spaces
model_path = "asset"
if not os.path.exists(model_path):
    snapshot_download(
        "Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
    )

# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def load_vae(vae_dir):
    vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
    vae_config_path = vae_dir / "config.json"
    with open(vae_config_path, "r") as f:
        vae_config = json.load(f)
    vae = CausalVideoAutoencoder.from_config(vae_config)
    vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
    vae.load_state_dict(vae_state_dict)
    return vae.to(device=device, dtype=torch.bfloat16)

def load_unet(unet_dir):
    unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
    unet_config_path = unet_dir / "config.json"
    transformer_config = Transformer3DModel.load_config(unet_config_path)
    transformer = Transformer3DModel.from_config(transformer_config)
    unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
    transformer.load_state_dict(unet_state_dict, strict=True)
    return transformer.to(device=device, dtype=torch.bfloat16)

def load_scheduler(scheduler_dir):
    scheduler_config_path = scheduler_dir / "scheduler_config.json"
    scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
    return RectifiedFlowScheduler.from_config(scheduler_config)

# Helper function for image processing
def center_crop_and_resize(frame, target_height, target_width):
    h, w, _ = frame.shape
    aspect_ratio_target = target_width / target_height
    aspect_ratio_frame = w / h
    if aspect_ratio_frame > aspect_ratio_target:
        new_width = int(h * aspect_ratio_target)
        x_start = (w - new_width) // 2
        frame_cropped = frame[:, x_start : x_start + new_width]
    else:
        new_height = int(w / aspect_ratio_target)
        y_start = (h - new_height) // 2
        frame_cropped = frame[y_start : y_start + new_height, :]
    frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
    return frame_resized

def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
    image = Image.open(image_path).convert("RGB")
    image_np = np.array(image)
    frame_resized = center_crop_and_resize(image_np, target_height, target_width)
    frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
    frame_tensor = (frame_tensor / 127.5) - 1.0
    return frame_tensor.unsqueeze(0).unsqueeze(2)

# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
).to(device)
tokenizer = T5Tokenizer.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)

pipeline = XoraVideoPipeline(
    transformer=unet,
    patchifier=patchifier,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    scheduler=scheduler,
    vae=vae,
).to(device)

# State λ³€μˆ˜λ“€μ˜ μ΄ˆκΈ°ν™” μˆ˜μ •
txt2vid_current_height = gr.State(value=320)
txt2vid_current_width = gr.State(value=512)
txt2vid_current_num_frames = gr.State(value=257)

img2vid_current_height = gr.State(value=320)
img2vid_current_width = gr.State(value=512)
img2vid_current_num_frames = gr.State(value=257)

# Preset options for resolution and frame configuration
# Convert frames to seconds assuming 25 FPS
preset_options = [
    {"label": "[16:9 HD] 1216x704, 1.6초", "width": 1216, "height": 704, "num_frames": 41},
    {"label": "[16:9] 1088x704, 2.0초", "width": 1088, "height": 704, "num_frames": 49},
    {"label": "[16:9] 1056x640, 2.3초", "width": 1056, "height": 640, "num_frames": 57},
    {"label": "[16:9] 992x608, 2.6초", "width": 992, "height": 608, "num_frames": 65},
    {"label": "[16:9] 896x608, 2.9초", "width": 896, "height": 608, "num_frames": 73},
    {"label": "[16:9] 896x544, 3.2초", "width": 896, "height": 544, "num_frames": 81},
    {"label": "[16:9] 832x544, 3.6초", "width": 832, "height": 544, "num_frames": 89},
    {"label": "[16:9] 800x512, 3.9초", "width": 800, "height": 512, "num_frames": 97},
    {"label": "[16:9] 768x512, 3.9초", "width": 768, "height": 512, "num_frames": 97},
    {"label": "[16:9] 800x480, 4.2초", "width": 800, "height": 480, "num_frames": 105},
    {"label": "[16:9] 736x480, 4.5초", "width": 736, "height": 480, "num_frames": 113},
    {"label": "[3:2] 704x480, 4.8초", "width": 704, "height": 480, "num_frames": 121},
    {"label": "[16:9] 704x448, 5.2초", "width": 704, "height": 448, "num_frames": 129},
    {"label": "[16:9] 672x448, 5.5초", "width": 672, "height": 448, "num_frames": 137},
    {"label": "[16:9] 640x416, 6.1초", "width": 640, "height": 416, "num_frames": 153},
    {"label": "[16:9] 672x384, 6.4초", "width": 672, "height": 384, "num_frames": 161},
    {"label": "[16:9] 640x384, 6.8초", "width": 640, "height": 384, "num_frames": 169},
    {"label": "[16:9] 608x384, 7.1초", "width": 608, "height": 384, "num_frames": 177},
    {"label": "[16:9] 576x384, 7.4초", "width": 576, "height": 384, "num_frames": 185},
    {"label": "[16:9] 608x352, 7.7초", "width": 608, "height": 352, "num_frames": 193},
    {"label": "[16:9] 576x352, 8.0초", "width": 576, "height": 352, "num_frames": 201},
    {"label": "[16:9] 544x352, 8.4초", "width": 544, "height": 352, "num_frames": 209},
    {"label": "[3:2] 512x352, 9.3초", "width": 512, "height": 352, "num_frames": 233},
    {"label": "[16:9] 544x320, 9.6초", "width": 544, "height": 320, "num_frames": 241},
    {"label": "[16:9] 512x320, 10.3초", "width": 512, "height": 320, "num_frames": 257},
]

def preset_changed(preset):
    selected = next(item for item in preset_options if item["label"] == preset)
    return [
        selected["height"],
        selected["width"],
        selected["num_frames"],
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False),
    ]    

def generate_video_from_text(
    prompt="",
    enhance_prompt_toggle=False,
    negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
    frame_rate=25,
    seed=171198,
    num_inference_steps=41,
    guidance_scale=4,
    height=320,
    width=512,
    num_frames=257,
    progress=gr.Progress(),
):
    if len(prompt.strip()) < 50:
        raise gr.Error(
            "ν”„λ‘¬ν”„νŠΈλŠ” μ΅œμ†Œ 50자 이상이어야 ν•©λ‹ˆλ‹€. 더 μžμ„Έν•œ μ„€λͺ…을 μ œκ³΅ν•΄μ£Όμ„Έμš”.",
            duration=5,
        )

    # Translate Korean prompts to English
    prompt = translate_korean_prompt(prompt)
    negative_prompt = translate_korean_prompt(negative_prompt)

    sample = {
        "prompt": prompt,
        "prompt_attention_mask": None,
        "negative_prompt": negative_prompt,
        "negative_prompt_attention_mask": None,
        "media_items": None,
    }

    generator = torch.Generator(device="cpu").manual_seed(seed)

    def gradio_progress_callback(self, step, timestep, kwargs):
        progress((step + 1) / num_inference_steps)

    try:
        with torch.no_grad():
            images = pipeline(
                num_inference_steps=num_inference_steps,
                num_images_per_prompt=1,
                guidance_scale=guidance_scale,
                generator=generator,
                output_type="pt",
                height=height,
                width=width,
                num_frames=num_frames,
                frame_rate=frame_rate,
                **sample,
                is_video=True,
                vae_per_channel_normalize=True,
                conditioning_method=ConditioningMethod.UNCONDITIONAL,
                mixed_precision=True,
                callback_on_step_end=gradio_progress_callback,
            ).images
    except Exception as e:
        raise gr.Error(
            f"λΉ„λ””μ˜€ 생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. λ‹€μ‹œ μ‹œλ„ν•΄μ£Όμ„Έμš”. 였λ₯˜: {e}",
            duration=5,
        )
    finally:
        torch.cuda.empty_cache()
        gc.collect()

    output_path = tempfile.mktemp(suffix=".mp4")
    print(images.shape)
    video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
    video_np = (video_np * 255).astype(np.uint8)
    height, width = video_np.shape[1:3]
    out = cv2.VideoWriter(
        output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
    )
    for frame in video_np[..., ::-1]:
        out.write(frame)
    out.release()
    del images
    del video_np
    torch.cuda.empty_cache()
    return output_path

def generate_video_from_image(
    image_path,
    prompt="",
    enhance_prompt_toggle=False,
    negative_prompt="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
    frame_rate=25,
    seed=171198,
    num_inference_steps=41,
    guidance_scale=4,
    height=320,
    width=512,
    num_frames=257,
    progress=gr.Progress(),
):
    print("Height: ", height)
    print("Width: ", width)
    print("Num Frames: ", num_frames)

    if len(prompt.strip()) < 50:
        raise gr.Error(
            "ν”„λ‘¬ν”„νŠΈλŠ” μ΅œμ†Œ 50자 이상이어야 ν•©λ‹ˆλ‹€. 더 μžμ„Έν•œ μ„€λͺ…을 μ œκ³΅ν•΄μ£Όμ„Έμš”.",
            duration=5,
        )

    if not image_path:
        raise gr.Error("μž…λ ₯ 이미지λ₯Ό μ œκ³΅ν•΄μ£Όμ„Έμš”.", duration=5)

    # Translate Korean prompts to English
    prompt = translate_korean_prompt(prompt)
    negative_prompt = translate_korean_prompt(negative_prompt)

    media_items = (
        load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
    )

    sample = {
        "prompt": prompt,
        "prompt_attention_mask": None,
        "negative_prompt": negative_prompt,
        "negative_prompt_attention_mask": None,
        "media_items": media_items,
    }

    generator = torch.Generator(device="cpu").manual_seed(seed)

    def gradio_progress_callback(self, step, timestep, kwargs):
        progress((step + 1) / num_inference_steps)

    try:
        with torch.no_grad():
            images = pipeline(
                num_inference_steps=num_inference_steps,
                num_images_per_prompt=1,
                guidance_scale=guidance_scale,
                generator=generator,
                output_type="pt",
                height=height,
                width=width,
                num_frames=num_frames,
                frame_rate=frame_rate,
                **sample,
                is_video=True,
                vae_per_channel_normalize=True,
                conditioning_method=ConditioningMethod.FIRST_FRAME,
                mixed_precision=True,
                callback_on_step_end=gradio_progress_callback,
            ).images

        output_path = tempfile.mktemp(suffix=".mp4")
        video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
        video_np = (video_np * 255).astype(np.uint8)
        height, width = video_np.shape[1:3]
        out = cv2.VideoWriter(
            output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
        )
        for frame in video_np[..., ::-1]:
            out.write(frame)
        out.release()
    except Exception as e:
        raise gr.Error(
            f"λΉ„λ””μ˜€ 생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. λ‹€μ‹œ μ‹œλ„ν•΄μ£Όμ„Έμš”. 였λ₯˜: {e}",
            duration=5,
        )

    finally:
        torch.cuda.empty_cache()
        gc.collect()

    return output_path

def create_advanced_options():
    with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=1000000,
            step=1,
            value=171198
        )
        inference_steps = gr.Slider(
            label="4.2 Inference Steps",
            minimum=1,
            maximum=50,
            step=1,
            value=41,
            visible=False
        )
        guidance_scale = gr.Slider(
            label="4.3 Guidance Scale",
            minimum=1.0,
            maximum=5.0,
            step=0.1,
            value=4.0,
            visible=False
        )
        height_slider = gr.Slider(
            label="4.4 Height",
            minimum=256,
            maximum=1024,
            step=64,
            value=320,
            visible=False,
        )
        width_slider = gr.Slider(
            label="4.5 Width",
            minimum=256,
            maximum=1024,
            step=64,
            value=512,
            visible=False,
        )
        num_frames_slider = gr.Slider(
            label="4.5 Number of Frames",
            minimum=1,
            maximum=200,
            step=1,
            value=257,
            visible=False,
        )

        return [
            seed,
            inference_steps,
            guidance_scale,
            height_slider,
            width_slider,
            num_frames_slider,
        ]


# μ‹œλ‚˜λ¦¬μ˜€ 뢄석 및 ν”„λ‘¬ν”„νŠΈ 생성을 μœ„ν•œ μ‹œμŠ€ν…œ ν”„λ‘¬ν”„νŠΈ
system_prompt_scenario = """당신은 μ˜μƒ μ‹œλ‚˜λ¦¬μ˜€λ₯Ό 5개의 μ„Ήμ…˜μœΌλ‘œ λ‚˜λˆ„κ³  각각에 λŒ€ν•œ λΉ„λ””μ˜€ 생성 ν”„λ‘¬ν”„νŠΈλ₯Ό μž‘μ„±ν•˜λŠ” μ „λ¬Έκ°€μž…λ‹ˆλ‹€.
주어진 μ‹œλ‚˜λ¦¬μ˜€λ₯Ό λ‹€μŒ 5개 μ„Ήμ…˜μœΌλ‘œ λ‚˜λˆ„μ–΄ 각각의 ν”„λ‘¬ν”„νŠΈλ₯Ό μƒμ„±ν•΄μ£Όμ„Έμš”:

1. λ°°κ²½ 및 ν•„μš”μ„±: 주제의 λ°°κ²½κ³Ό μ€‘μš”μ„±μ„ μ‹œκ°μ μœΌλ‘œ ν‘œν˜„
2. 문제 제기 및 ν₯λ―Έ 유발: 핡심 λ¬Έμ œλ‚˜ ν₯미둜운 포인트λ₯Ό λ“œλΌλ§ˆν‹±ν•˜κ²Œ ν‘œν˜„
3. ν•΄κ²°μ±… μ œμ‹œ: μ£Όμš” ν•΄κ²°λ°©μ•ˆμ΄λ‚˜ 접근법을 μ‹œκ°μ μœΌλ‘œ μ œμ‹œ
4. λ³Έλ‘ : 핡심 λ‚΄μš©μ„ μƒμ„Ένžˆ μ„€λͺ…ν•˜λŠ” μ‹œκ°μ  ν‘œν˜„
5. κ²°λ‘  및 κ°•μ‘°: μ£Όμš” 포인트λ₯Ό λ‹€μ‹œ ν•œλ²ˆ κ°•μ‘°ν•˜κ³  마무리

각 μ„Ήμ…˜μ˜ ν”„λ‘¬ν”„νŠΈλŠ” λ‹€μŒ μš”μ†Œλ₯Ό 포함해야 ν•©λ‹ˆλ‹€:
- μ£Όμš” μ‹œκ°μ  μš”μ†Œμ™€ λ™μž‘
- 카메라 μ›€μ§μž„κ³Ό μ•΅κΈ€
- μž₯λ©΄ μ „ν™˜κ³Ό 효과
- λΆ„μœ„κΈ°μ™€ 톀
- λ“±μž₯ μš”μ†Œλ“€μ˜ μ„ΈλΆ€ λ¬˜μ‚¬

각 μ„Ήμ…˜μ€ 10초 λΆ„λŸ‰μ˜ μ˜μƒμ„ 생성할 수 μžˆλ„λ‘ ꡬ체적이고 μ‹œκ°μ μΈ μ„€λͺ…을 포함해야 ν•©λ‹ˆλ‹€."""

def analyze_scenario(scenario):
    """μ‹œλ‚˜λ¦¬μ˜€λ₯Ό λΆ„μ„ν•˜μ—¬ 5개의 μ„Ήμ…˜μœΌλ‘œ λ‚˜λˆ„κ³  각각의 ν”„λ‘¬ν”„νŠΈλ₯Ό 생성"""
    messages = [
        {"role": "system", "content": system_prompt_scenario},
        {"role": "user", "content": scenario},
    ]
    
    try:
        response = client.chat.completions.create(
            model="gpt-4-1106-preview",
            messages=messages,
            max_tokens=2000,
        )
        prompts = response.choices[0].message.content.strip().split("\n\n")
        
        # 5개의 μ„Ήμ…˜μœΌλ‘œ 정리
        section_prompts = []
        current_section = ""
        for line in prompts:
            if line.strip():
                if any(section in line for section in ["1.", "2.", "3.", "4.", "5."]):
                    if current_section:
                        section_prompts.append(current_section)
                    current_section = line
                else:
                    current_section += "\n" + line
        if current_section:
            section_prompts.append(current_section)
            
        # μ •ν™•νžˆ 5개의 μ„Ήμ…˜μ΄ λ˜λ„λ‘ μ‘°μ •
        while len(section_prompts) < 5:
            section_prompts.append("μΆ”κ°€ μ„Ήμ…˜μ΄ ν•„μš”ν•©λ‹ˆλ‹€.")
        return section_prompts[:5]
    except Exception as e:
        print(f"Error during scenario analysis: {e}")
        return ["Error occurred during analysis"] * 5

def generate_section_video(prompt, preset, progress=gr.Progress()):
    """각 μ„Ήμ…˜μ˜ λΉ„λ””μ˜€ 생성"""
    selected = next(item for item in preset_options if item["label"] == preset)
    return generate_video_from_text(
        prompt=prompt,
        height=selected["height"],
        width=selected["width"],
        num_frames=selected["num_frames"],
        progress=progress
    )
    
# Gradio Interface Definition
with gr.Blocks(theme=gr.themes.Soft()) as iface:
    with gr.Tabs():
        # Text to Video Tab
        with gr.TabItem("ν…μŠ€νŠΈλ‘œ λΉ„λ””μ˜€ λ§Œλ“€κΈ°"):
            with gr.Row():
                with gr.Column():
                    txt2vid_prompt = gr.Textbox(
                        label="Step 1: ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
                        placeholder="μƒμ„±ν•˜κ³  싢은 λΉ„λ””μ˜€λ₯Ό μ„€λͺ…ν•˜μ„Έμš” (μ΅œμ†Œ 50자)...",
                        value="κ·€μ—¬μš΄ 고양이",
                        lines=5,
                    )
                    txt2vid_enhance_toggle = Toggle(
                        label="ν”„λ‘¬ν”„νŠΈ κ°œμ„ ",
                        value=False,
                        interactive=True,
                    )

                    txt2vid_negative_prompt = gr.Textbox(
                        label="Step 2: λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
                        placeholder="λΉ„λ””μ˜€μ—μ„œ μ›ν•˜μ§€ μ•ŠλŠ” μš”μ†Œλ₯Ό μ„€λͺ…ν•˜μ„Έμš”...",
                        value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
                        lines=2,
                        visible=False
                    )

                    txt2vid_preset = gr.Dropdown(
                        choices=[p["label"] for p in preset_options],
                        value="[16:9] 512x320, 10.3초",
                        label="Step 2: 해상도 프리셋 선택",
                    )

                    txt2vid_frame_rate = gr.Slider(
                        label="Step 3: ν”„λ ˆμž„ 레이트",
                        minimum=21,
                        maximum=30,
                        step=1,
                        value=25,
                        visible=False
                    )

                    txt2vid_advanced = create_advanced_options()
                    txt2vid_generate = gr.Button(
                        "Step 3: λΉ„λ””μ˜€ 생성",
                        variant="primary",
                        size="lg",
                    )

                with gr.Column():
                    txt2vid_output = gr.Video(label="μƒμ„±λœ λΉ„λ””μ˜€")

        # Image to Video Tab
        with gr.TabItem("μ΄λ―Έμ§€λ‘œ λΉ„λ””μ˜€ λ§Œλ“€κΈ°"):
            with gr.Row():
                with gr.Column():
                    img2vid_image = gr.Image(
                        type="filepath",
                        label="Step 1: μž…λ ₯ 이미지 μ—…λ‘œλ“œ",
                        elem_id="image_upload",
                    )
                    img2vid_prompt = gr.Textbox(
                        label="Step 2: ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
                        placeholder="이미지λ₯Ό μ–΄λ–»κ²Œ μ• λ‹ˆλ©”μ΄μ…˜ν™”ν• μ§€ μ„€λͺ…ν•˜μ„Έμš” (μ΅œμ†Œ 50자)...",
                        value="κ·€μ—¬μš΄ 고양이",
                        lines=5,
                    )
                    img2vid_enhance_toggle = Toggle(
                        label="ν”„λ‘¬ν”„νŠΈ 증강",
                        value=False,
                        interactive=True,
                    )
                    img2vid_negative_prompt = gr.Textbox(
                        label="Step 3: λ„€κ±°ν‹°λΈŒ ν”„λ‘¬ν”„νŠΈ μž…λ ₯",
                        placeholder="λΉ„λ””μ˜€μ—μ„œ μ›ν•˜μ§€ μ•ŠλŠ” μš”μ†Œλ₯Ό μ„€λͺ…ν•˜μ„Έμš”...",
                        value="low quality, worst quality, deformed, distorted, warped, motion smear, motion artifacts, fused fingers, incorrect anatomy, strange hands, unattractive",
                        lines=2,
                        visible=False
                    )

                    img2vid_preset = gr.Dropdown(
                        choices=[p["label"] for p in preset_options],
                        value="[16:9] 512x320, 10.3초",
                        label="Step 3: 해상도 프리셋 선택",
                    )

                    img2vid_frame_rate = gr.Slider(
                        label="Step 4: ν”„λ ˆμž„ 레이트",
                        minimum=21,
                        maximum=30,
                        step=1,
                        value=25,
                        visible=False
                    )

                    img2vid_advanced = create_advanced_options()
                    img2vid_generate = gr.Button(
                        "Step 4: λΉ„λ””μ˜€ 생성",
                        variant="primary",
                        size="lg",
                    )

                with gr.Column():
                    img2vid_output = gr.Video(label="μƒμ„±λœ λΉ„λ””μ˜€")

        # Scenario to Video Tab (New)
        with gr.TabItem("μ‹œλ‚˜λ¦¬μ˜€λ‘œ λΉ„λ””μ˜€ λ§Œλ“€κΈ°(숏폼)"):
            with gr.Row():
                with gr.Column(scale=1):
                    scenario_input = gr.Textbox(
                        label="μ˜μƒ 슀크립트 μž…λ ₯",
                        placeholder="전체 μ‹œλ‚˜λ¦¬μ˜€λ₯Ό μž…λ ₯ν•˜μ„Έμš”...",
                        lines=10
                    )
                    scenario_preset = gr.Dropdown(
                        choices=[p["label"] for p in preset_options],
                        value="[16:9] 512x320, 10.3초",
                        label="ν™”λ©΄ 크기 선택"
                    )
                    analyze_btn = gr.Button("μ‹œλ‚˜λ¦¬μ˜€ 뢄석 및 ν”„λ‘¬ν”„νŠΈ 생성", variant="primary")
                
                with gr.Column(scale=2):
                    with gr.Row():
                        # μ„Ήμ…˜ 1
                        with gr.Column():
                            section1_prompt = gr.Textbox(
                                label="1. λ°°κ²½ 및 ν•„μš”μ„±",
                                lines=4
                            )
                            section1_generate = gr.Button("생성")
                            section1_video = gr.Video(label="μ„Ήμ…˜ 1 μ˜μƒ")
                        
                        # μ„Ήμ…˜ 2
                        with gr.Column():
                            section2_prompt = gr.Textbox(
                                label="2. 문제 제기 및 ν₯λ―Έ 유발",
                                lines=4
                            )
                            section2_generate = gr.Button("생성")
                            section2_video = gr.Video(label="μ„Ήμ…˜ 2 μ˜μƒ")
                    
                    with gr.Row():
                        # μ„Ήμ…˜ 3
                        with gr.Column():
                            section3_prompt = gr.Textbox(
                                label="3. ν•΄κ²°μ±… μ œμ‹œ",
                                lines=4
                            )
                            section3_generate = gr.Button("생성")
                            section3_video = gr.Video(label="μ„Ήμ…˜ 3 μ˜μƒ")
                        
                        # μ„Ήμ…˜ 4
                        with gr.Column():
                            section4_prompt = gr.Textbox(
                                label="4. λ³Έλ‘ ",
                                lines=4
                            )
                            section4_generate = gr.Button("생성")
                            section4_video = gr.Video(label="μ„Ήμ…˜ 4 μ˜μƒ")
                    
                    with gr.Row():
                        # μ„Ήμ…˜ 5
                        with gr.Column():
                            section5_prompt = gr.Textbox(
                                label="5. κ²°λ‘  및 κ°•μ‘°",
                                lines=4
                            )
                            section5_generate = gr.Button("생성")
                            section5_video = gr.Video(label="μ„Ήμ…˜ 5 μ˜μƒ")

    # Event handlers
    txt2vid_preset.change(
        fn=preset_changed,
        inputs=[txt2vid_preset],
        outputs=[
            txt2vid_current_height,
            txt2vid_current_width,
            txt2vid_current_num_frames,
            *txt2vid_advanced[3:]
        ]
    )

    txt2vid_enhance_toggle.change(
        fn=update_prompt_t2v,
        inputs=[txt2vid_prompt, txt2vid_enhance_toggle],
        outputs=txt2vid_prompt
    )

    txt2vid_generate.click(
        fn=generate_video_from_text,
        inputs=[
            txt2vid_prompt,
            txt2vid_enhance_toggle,
            txt2vid_negative_prompt,
            txt2vid_frame_rate,
            *txt2vid_advanced[:3],
            txt2vid_current_height,
            txt2vid_current_width,
            txt2vid_current_num_frames,
        ],
        outputs=txt2vid_output,
        concurrency_limit=1,
        concurrency_id="generate_video",
        queue=True,
    )

    img2vid_preset.change(
        fn=preset_changed,
        inputs=[img2vid_preset],
        outputs=[
            img2vid_current_height,
            img2vid_current_width,
            img2vid_current_num_frames,
            *img2vid_advanced[3:]
        ]
    )

    img2vid_enhance_toggle.change(
        fn=update_prompt_i2v,
        inputs=[img2vid_prompt, img2vid_enhance_toggle],
        outputs=img2vid_prompt
    )

    img2vid_generate.click(
        fn=generate_video_from_image,
        inputs=[
            img2vid_image,
            img2vid_prompt,
            img2vid_enhance_toggle,
            img2vid_negative_prompt,
            img2vid_frame_rate,
            *img2vid_advanced[:3],
            img2vid_current_height,
            img2vid_current_width,
            img2vid_current_num_frames,
        ],
        outputs=img2vid_output,
        concurrency_limit=1,
        concurrency_id="generate_video",
        queue=True,
    )

    # Scenario tab event handlers
    analyze_btn.click(
        fn=analyze_scenario,
        inputs=[scenario_input],
        outputs=[
            section1_prompt, section2_prompt, section3_prompt,
            section4_prompt, section5_prompt
        ]
    )

    section1_generate.click(
        fn=generate_section_video,
        inputs=[section1_prompt, scenario_preset],
        outputs=section1_video
    )

    section2_generate.click(
        fn=generate_section_video,
        inputs=[section2_prompt, scenario_preset],
        outputs=section2_video
    )

    section3_generate.click(
        fn=generate_section_video,
        inputs=[section3_prompt, scenario_preset],
        outputs=section3_video
    )

    section4_generate.click(
        fn=generate_section_video,
        inputs=[section4_prompt, scenario_preset],
        outputs=section4_video
    )

    section5_generate.click(
        fn=generate_section_video,
        inputs=[section5_prompt, scenario_preset],
        outputs=section5_video
    )

if __name__ == "__main__":
    iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
        share=True, show_api=False
    )