Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from gradio_toggle import Toggle
|
3 |
import torch
|
4 |
from huggingface_hub import snapshot_download
|
|
|
5 |
|
6 |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
7 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
@@ -20,11 +21,33 @@ import tempfile
|
|
20 |
import os
|
21 |
import gc
|
22 |
from openai import OpenAI
|
|
|
23 |
|
24 |
# Load Hugging Face token if needed
|
25 |
hf_token = os.getenv("HF_TOKEN")
|
26 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
27 |
client = OpenAI(api_key=openai_api_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
|
29 |
system_prompt_i2v_path = "assets/system_prompt_i2v.txt"
|
30 |
with open(system_prompt_t2v_path, "r") as f:
|
@@ -47,7 +70,6 @@ scheduler_dir = Path(model_path) / "scheduler"
|
|
47 |
|
48 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
|
50 |
-
|
51 |
def load_vae(vae_dir):
|
52 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
53 |
vae_config_path = vae_dir / "config.json"
|
@@ -58,7 +80,6 @@ def load_vae(vae_dir):
|
|
58 |
vae.load_state_dict(vae_state_dict)
|
59 |
return vae.to(device=device, dtype=torch.bfloat16)
|
60 |
|
61 |
-
|
62 |
def load_unet(unet_dir):
|
63 |
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
|
64 |
unet_config_path = unet_dir / "config.json"
|
@@ -68,13 +89,11 @@ def load_unet(unet_dir):
|
|
68 |
transformer.load_state_dict(unet_state_dict, strict=True)
|
69 |
return transformer.to(device=device, dtype=torch.bfloat16)
|
70 |
|
71 |
-
|
72 |
def load_scheduler(scheduler_dir):
|
73 |
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
74 |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
75 |
return RectifiedFlowScheduler.from_config(scheduler_config)
|
76 |
|
77 |
-
|
78 |
# Helper function for image processing
|
79 |
def center_crop_and_resize(frame, target_height, target_width):
|
80 |
h, w, _ = frame.shape
|
@@ -91,7 +110,6 @@ def center_crop_and_resize(frame, target_height, target_width):
|
|
91 |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
|
92 |
return frame_resized
|
93 |
|
94 |
-
|
95 |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
|
96 |
image = Image.open(image_path).convert("RGB")
|
97 |
image_np = np.array(image)
|
@@ -100,7 +118,6 @@ def load_image_to_tensor_with_resize(image_path, target_height=512, target_width
|
|
100 |
frame_tensor = (frame_tensor / 127.5) - 1.0
|
101 |
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
102 |
|
103 |
-
|
104 |
def enhance_prompt_if_enabled(prompt, enhance_toggle, type="t2v"):
|
105 |
if not enhance_toggle:
|
106 |
print("Enhance toggle is off, Prompt: ", prompt)
|
@@ -114,7 +131,7 @@ def enhance_prompt_if_enabled(prompt, enhance_toggle, type="t2v"):
|
|
114 |
|
115 |
try:
|
116 |
response = client.chat.completions.create(
|
117 |
-
model="gpt-
|
118 |
messages=messages,
|
119 |
max_tokens=200,
|
120 |
)
|
@@ -124,7 +141,6 @@ def enhance_prompt_if_enabled(prompt, enhance_toggle, type="t2v"):
|
|
124 |
print(f"Error: {e}")
|
125 |
return prompt
|
126 |
|
127 |
-
|
128 |
# Preset options for resolution and frame configuration
|
129 |
preset_options = [
|
130 |
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
|
@@ -156,8 +172,6 @@ preset_options = [
|
|
156 |
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
|
157 |
]
|
158 |
|
159 |
-
|
160 |
-
# Function to toggle visibility of sliders based on preset selection
|
161 |
def preset_changed(preset):
|
162 |
if preset != "Custom":
|
163 |
selected = next(item for item in preset_options if item["label"] == preset)
|
@@ -179,7 +193,6 @@ def preset_changed(preset):
|
|
179 |
gr.update(visible=True),
|
180 |
)
|
181 |
|
182 |
-
|
183 |
# Load models
|
184 |
vae = load_vae(vae_dir)
|
185 |
unet = load_unet(unet_dir)
|
@@ -201,7 +214,6 @@ pipeline = XoraVideoPipeline(
|
|
201 |
vae=vae,
|
202 |
).to(device)
|
203 |
|
204 |
-
|
205 |
def generate_video_from_text(
|
206 |
prompt="",
|
207 |
enhance_prompt_toggle=False,
|
@@ -217,11 +229,16 @@ def generate_video_from_text(
|
|
217 |
):
|
218 |
if len(prompt.strip()) < 50:
|
219 |
raise gr.Error(
|
220 |
-
"
|
221 |
duration=5,
|
222 |
)
|
223 |
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
sample = {
|
227 |
"prompt": prompt,
|
@@ -257,7 +274,7 @@ def generate_video_from_text(
|
|
257 |
).images
|
258 |
except Exception as e:
|
259 |
raise gr.Error(
|
260 |
-
f"
|
261 |
duration=5,
|
262 |
)
|
263 |
finally:
|
@@ -275,13 +292,13 @@ def generate_video_from_text(
|
|
275 |
for frame in video_np[..., ::-1]:
|
276 |
out.write(frame)
|
277 |
out.release()
|
278 |
-
# Explicitly delete tensors and clear cache
|
279 |
del images
|
280 |
del video_np
|
281 |
torch.cuda.empty_cache()
|
282 |
return output_path
|
283 |
|
284 |
|
|
|
285 |
def generate_video_from_image(
|
286 |
image_path,
|
287 |
prompt="",
|
@@ -296,25 +313,29 @@ def generate_video_from_image(
|
|
296 |
num_frames=121,
|
297 |
progress=gr.Progress(),
|
298 |
):
|
299 |
-
|
300 |
print("Height: ", height)
|
301 |
print("Width: ", width)
|
302 |
print("Num Frames: ", num_frames)
|
303 |
|
304 |
if len(prompt.strip()) < 50:
|
305 |
raise gr.Error(
|
306 |
-
"
|
307 |
duration=5,
|
308 |
)
|
309 |
|
310 |
if not image_path:
|
311 |
-
raise gr.Error("
|
|
|
|
|
|
|
|
|
312 |
|
313 |
media_items = (
|
314 |
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
|
315 |
)
|
316 |
|
317 |
-
|
|
|
318 |
|
319 |
sample = {
|
320 |
"prompt": prompt,
|
@@ -361,7 +382,7 @@ def generate_video_from_image(
|
|
361 |
out.release()
|
362 |
except Exception as e:
|
363 |
raise gr.Error(
|
364 |
-
f"
|
365 |
duration=5,
|
366 |
)
|
367 |
|
@@ -371,7 +392,6 @@ def generate_video_from_image(
|
|
371 |
|
372 |
return output_path
|
373 |
|
374 |
-
|
375 |
def create_advanced_options():
|
376 |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
377 |
seed = gr.Slider(
|
@@ -418,8 +438,7 @@ def create_advanced_options():
|
|
418 |
num_frames_slider,
|
419 |
]
|
420 |
|
421 |
-
|
422 |
-
# Define the Gradio interface with tabs
|
423 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
424 |
with gr.Row(elem_id="title-row"):
|
425 |
gr.Markdown(
|
@@ -430,7 +449,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
430 |
"""
|
431 |
)
|
432 |
with gr.Row(elem_id="title-row"):
|
433 |
-
gr.HTML(
|
434 |
"""
|
435 |
<div style="display:flex;column-gap:4px;">
|
436 |
<a href="https://github.com/Lightricks/LTX-Video">
|
@@ -456,62 +475,63 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
456 |
):
|
457 |
gr.Markdown(
|
458 |
"""
|
459 |
-
๐
|
460 |
|
461 |
-
|
462 |
-
For best results, build your prompts using this structure:
|
463 |
|
464 |
-
|
465 |
-
- Add specific details about movements and gestures
|
466 |
-
- Describe character/object appearances precisely
|
467 |
-
- Include background and environment details
|
468 |
-
- Specify camera angles and movements
|
469 |
-
- Describe lighting and colors
|
470 |
-
- Note any changes or sudden events
|
471 |
|
472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
|
474 |
-
|
475 |
|
476 |
-
|
477 |
-
|
478 |
-
-
|
479 |
-
-
|
|
|
|
|
480 |
"""
|
481 |
)
|
482 |
|
483 |
with gr.Tabs():
|
484 |
# Text to Video Tab
|
485 |
-
with gr.TabItem("
|
486 |
with gr.Row():
|
487 |
with gr.Column():
|
488 |
txt2vid_prompt = gr.Textbox(
|
489 |
-
label="Step 1:
|
490 |
-
placeholder="
|
491 |
-
value="
|
492 |
lines=5,
|
493 |
)
|
494 |
txt2vid_enhance_toggle = Toggle(
|
495 |
-
label="
|
496 |
value=False,
|
497 |
interactive=True,
|
498 |
)
|
499 |
|
500 |
txt2vid_negative_prompt = gr.Textbox(
|
501 |
-
label="Step 2:
|
502 |
-
placeholder="
|
503 |
-
value="
|
504 |
lines=2,
|
505 |
)
|
506 |
|
507 |
txt2vid_preset = gr.Dropdown(
|
508 |
choices=[p["label"] for p in preset_options],
|
509 |
value="768x512, 97 frames",
|
510 |
-
label="Step 3.1:
|
511 |
)
|
512 |
|
513 |
txt2vid_frame_rate = gr.Slider(
|
514 |
-
label="Step 3.2:
|
515 |
minimum=21,
|
516 |
maximum=30,
|
517 |
step=1,
|
@@ -520,72 +540,72 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
520 |
|
521 |
txt2vid_advanced = create_advanced_options()
|
522 |
txt2vid_generate = gr.Button(
|
523 |
-
"Step 5:
|
524 |
variant="primary",
|
525 |
size="lg",
|
526 |
)
|
527 |
|
528 |
with gr.Column():
|
529 |
-
txt2vid_output = gr.Video(label="
|
530 |
|
531 |
with gr.Row():
|
532 |
gr.Examples(
|
533 |
examples=[
|
534 |
[
|
535 |
-
"
|
536 |
-
"
|
537 |
"assets/t2v_2.mp4",
|
538 |
],
|
539 |
[
|
540 |
-
"
|
541 |
-
"
|
542 |
"assets/t2v_1.mp4",
|
543 |
],
|
544 |
[
|
545 |
-
"
|
546 |
-
"
|
547 |
"assets/t2v_0.mp4",
|
548 |
],
|
549 |
],
|
550 |
inputs=[txt2vid_prompt, txt2vid_negative_prompt, txt2vid_output],
|
551 |
-
label="
|
552 |
)
|
553 |
|
554 |
# Image to Video Tab
|
555 |
-
with gr.TabItem("
|
556 |
with gr.Row():
|
557 |
with gr.Column():
|
558 |
img2vid_image = gr.Image(
|
559 |
type="filepath",
|
560 |
-
label="Step 1:
|
561 |
elem_id="image_upload",
|
562 |
)
|
563 |
img2vid_prompt = gr.Textbox(
|
564 |
-
label="Step 2:
|
565 |
-
placeholder="
|
566 |
-
value="
|
567 |
lines=5,
|
568 |
)
|
569 |
img2vid_enhance_toggle = Toggle(
|
570 |
-
label="
|
571 |
value=False,
|
572 |
interactive=True,
|
573 |
)
|
574 |
img2vid_negative_prompt = gr.Textbox(
|
575 |
-
label="Step 3:
|
576 |
-
placeholder="
|
577 |
-
value="
|
578 |
lines=2,
|
579 |
)
|
580 |
|
581 |
img2vid_preset = gr.Dropdown(
|
582 |
choices=[p["label"] for p in preset_options],
|
583 |
value="768x512, 97 frames",
|
584 |
-
label="Step 3.1:
|
585 |
)
|
586 |
|
587 |
img2vid_frame_rate = gr.Slider(
|
588 |
-
label="Step 3.2:
|
589 |
minimum=21,
|
590 |
maximum=30,
|
591 |
step=1,
|
@@ -594,31 +614,31 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
594 |
|
595 |
img2vid_advanced = create_advanced_options()
|
596 |
img2vid_generate = gr.Button(
|
597 |
-
"Step 6:
|
598 |
)
|
599 |
|
600 |
with gr.Column():
|
601 |
-
img2vid_output = gr.Video(label="
|
602 |
|
603 |
with gr.Row():
|
604 |
gr.Examples(
|
605 |
examples=[
|
606 |
[
|
607 |
"assets/i2v_i2.png",
|
608 |
-
"
|
609 |
-
"
|
610 |
"assets/i2v_2.mp4",
|
611 |
],
|
612 |
[
|
613 |
"assets/i2v_i0.png",
|
614 |
-
"
|
615 |
-
"
|
616 |
"assets/i2v_0.mp4",
|
617 |
],
|
618 |
[
|
619 |
"assets/i2v_i1.png",
|
620 |
-
"
|
621 |
-
"
|
622 |
"assets/i2v_1.mp4",
|
623 |
],
|
624 |
],
|
@@ -628,10 +648,10 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
628 |
img2vid_negative_prompt,
|
629 |
img2vid_output,
|
630 |
],
|
631 |
-
label="
|
632 |
)
|
633 |
|
634 |
-
#
|
635 |
txt2vid_preset.change(
|
636 |
fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[3:]
|
637 |
)
|
@@ -674,4 +694,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
674 |
if __name__ == "__main__":
|
675 |
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
|
676 |
share=True, show_api=False
|
677 |
-
)
|
|
|
2 |
from gradio_toggle import Toggle
|
3 |
import torch
|
4 |
from huggingface_hub import snapshot_download
|
5 |
+
from transformers import pipeline
|
6 |
|
7 |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
8 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
|
|
21 |
import os
|
22 |
import gc
|
23 |
from openai import OpenAI
|
24 |
+
import re
|
25 |
|
26 |
# Load Hugging Face token if needed
|
27 |
hf_token = os.getenv("HF_TOKEN")
|
28 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
29 |
client = OpenAI(api_key=openai_api_key)
|
30 |
+
|
31 |
+
# Initialize translation pipeline
|
32 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
33 |
+
|
34 |
+
# Korean text detection function
|
35 |
+
def contains_korean(text):
|
36 |
+
korean_pattern = re.compile('[ใฑ-ใ
ใ
-ใ
ฃ๊ฐ-ํฃ]')
|
37 |
+
return bool(korean_pattern.search(text))
|
38 |
+
|
39 |
+
def translate_korean_prompt(prompt):
|
40 |
+
"""
|
41 |
+
Translate Korean prompt to English if Korean text is detected
|
42 |
+
"""
|
43 |
+
if contains_korean(prompt):
|
44 |
+
translated = translator(prompt)[0]['translation_text']
|
45 |
+
print(f"Original Korean prompt: {prompt}")
|
46 |
+
print(f"Translated English prompt: {translated}")
|
47 |
+
return translated
|
48 |
+
return prompt
|
49 |
+
|
50 |
+
# Load system prompts
|
51 |
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
|
52 |
system_prompt_i2v_path = "assets/system_prompt_i2v.txt"
|
53 |
with open(system_prompt_t2v_path, "r") as f:
|
|
|
70 |
|
71 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
72 |
|
|
|
73 |
def load_vae(vae_dir):
|
74 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
75 |
vae_config_path = vae_dir / "config.json"
|
|
|
80 |
vae.load_state_dict(vae_state_dict)
|
81 |
return vae.to(device=device, dtype=torch.bfloat16)
|
82 |
|
|
|
83 |
def load_unet(unet_dir):
|
84 |
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
|
85 |
unet_config_path = unet_dir / "config.json"
|
|
|
89 |
transformer.load_state_dict(unet_state_dict, strict=True)
|
90 |
return transformer.to(device=device, dtype=torch.bfloat16)
|
91 |
|
|
|
92 |
def load_scheduler(scheduler_dir):
|
93 |
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
94 |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
95 |
return RectifiedFlowScheduler.from_config(scheduler_config)
|
96 |
|
|
|
97 |
# Helper function for image processing
|
98 |
def center_crop_and_resize(frame, target_height, target_width):
|
99 |
h, w, _ = frame.shape
|
|
|
110 |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
|
111 |
return frame_resized
|
112 |
|
|
|
113 |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
|
114 |
image = Image.open(image_path).convert("RGB")
|
115 |
image_np = np.array(image)
|
|
|
118 |
frame_tensor = (frame_tensor / 127.5) - 1.0
|
119 |
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
120 |
|
|
|
121 |
def enhance_prompt_if_enabled(prompt, enhance_toggle, type="t2v"):
|
122 |
if not enhance_toggle:
|
123 |
print("Enhance toggle is off, Prompt: ", prompt)
|
|
|
131 |
|
132 |
try:
|
133 |
response = client.chat.completions.create(
|
134 |
+
model="gpt-4-1106-preview",
|
135 |
messages=messages,
|
136 |
max_tokens=200,
|
137 |
)
|
|
|
141 |
print(f"Error: {e}")
|
142 |
return prompt
|
143 |
|
|
|
144 |
# Preset options for resolution and frame configuration
|
145 |
preset_options = [
|
146 |
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
|
|
|
172 |
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257},
|
173 |
]
|
174 |
|
|
|
|
|
175 |
def preset_changed(preset):
|
176 |
if preset != "Custom":
|
177 |
selected = next(item for item in preset_options if item["label"] == preset)
|
|
|
193 |
gr.update(visible=True),
|
194 |
)
|
195 |
|
|
|
196 |
# Load models
|
197 |
vae = load_vae(vae_dir)
|
198 |
unet = load_unet(unet_dir)
|
|
|
214 |
vae=vae,
|
215 |
).to(device)
|
216 |
|
|
|
217 |
def generate_video_from_text(
|
218 |
prompt="",
|
219 |
enhance_prompt_toggle=False,
|
|
|
229 |
):
|
230 |
if len(prompt.strip()) < 50:
|
231 |
raise gr.Error(
|
232 |
+
"ํ๋กฌํํธ๋ ์ต์ 50์ ์ด์์ด์ด์ผ ํฉ๋๋ค. ๋ ์์ธํ ์ค๋ช
์ ์ ๊ณตํด์ฃผ์ธ์.",
|
233 |
duration=5,
|
234 |
)
|
235 |
|
236 |
+
# Translate Korean prompts to English
|
237 |
+
prompt = translate_korean_prompt(prompt)
|
238 |
+
negative_prompt = translate_korean_prompt(negative_prompt)
|
239 |
+
|
240 |
+
if enhance_prompt_toggle:
|
241 |
+
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="t2v")
|
242 |
|
243 |
sample = {
|
244 |
"prompt": prompt,
|
|
|
274 |
).images
|
275 |
except Exception as e:
|
276 |
raise gr.Error(
|
277 |
+
f"๋น๋์ค ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค. ๋ค์ ์๋ํด์ฃผ์ธ์. ์ค๋ฅ: {e}",
|
278 |
duration=5,
|
279 |
)
|
280 |
finally:
|
|
|
292 |
for frame in video_np[..., ::-1]:
|
293 |
out.write(frame)
|
294 |
out.release()
|
|
|
295 |
del images
|
296 |
del video_np
|
297 |
torch.cuda.empty_cache()
|
298 |
return output_path
|
299 |
|
300 |
|
301 |
+
|
302 |
def generate_video_from_image(
|
303 |
image_path,
|
304 |
prompt="",
|
|
|
313 |
num_frames=121,
|
314 |
progress=gr.Progress(),
|
315 |
):
|
|
|
316 |
print("Height: ", height)
|
317 |
print("Width: ", width)
|
318 |
print("Num Frames: ", num_frames)
|
319 |
|
320 |
if len(prompt.strip()) < 50:
|
321 |
raise gr.Error(
|
322 |
+
"ํ๋กฌํํธ๋ ์ต์ 50์ ์ด์์ด์ด์ผ ํฉ๋๋ค. ๋ ์์ธํ ์ค๋ช
์ ์ ๊ณตํด์ฃผ์ธ์.",
|
323 |
duration=5,
|
324 |
)
|
325 |
|
326 |
if not image_path:
|
327 |
+
raise gr.Error("์
๋ ฅ ์ด๋ฏธ์ง๋ฅผ ์ ๊ณตํด์ฃผ์ธ์.", duration=5)
|
328 |
+
|
329 |
+
# Translate Korean prompts to English
|
330 |
+
prompt = translate_korean_prompt(prompt)
|
331 |
+
negative_prompt = translate_korean_prompt(negative_prompt)
|
332 |
|
333 |
media_items = (
|
334 |
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
|
335 |
)
|
336 |
|
337 |
+
if enhance_prompt_toggle:
|
338 |
+
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="i2v")
|
339 |
|
340 |
sample = {
|
341 |
"prompt": prompt,
|
|
|
382 |
out.release()
|
383 |
except Exception as e:
|
384 |
raise gr.Error(
|
385 |
+
f"๋น๋์ค ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค. ๋ค์ ์๋ํด์ฃผ์ธ์. ์ค๋ฅ: {e}",
|
386 |
duration=5,
|
387 |
)
|
388 |
|
|
|
392 |
|
393 |
return output_path
|
394 |
|
|
|
395 |
def create_advanced_options():
|
396 |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
397 |
seed = gr.Slider(
|
|
|
438 |
num_frames_slider,
|
439 |
]
|
440 |
|
441 |
+
# Gradio Interface Definition
|
|
|
442 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
443 |
with gr.Row(elem_id="title-row"):
|
444 |
gr.Markdown(
|
|
|
449 |
"""
|
450 |
)
|
451 |
with gr.Row(elem_id="title-row"):
|
452 |
+
gr.HTML(
|
453 |
"""
|
454 |
<div style="display:flex;column-gap:4px;">
|
455 |
<a href="https://github.com/Lightricks/LTX-Video">
|
|
|
475 |
):
|
476 |
gr.Markdown(
|
477 |
"""
|
478 |
+
๐ ํ๋กฌํํธ ์์ฑ ํ
|
479 |
|
480 |
+
ํ๋กฌํํธ ์์ฑ ์ ๋์๊ณผ ์ฅ๋ฉด์ ๋ํ ์์ธํ๊ณ ์๊ฐ ์์๋๋ก ๋ ์ค๋ช
์ ์ง์คํ์ธ์. ๊ตฌ์ฒด์ ์ธ ์์ง์, ์ธ๋ชจ, ์นด๋ฉ๋ผ ๊ฐ๋, ํ๊ฒฝ ์ธ๋ถ ์ฌํญ์ ํฌํจํ๋ ํ๋์ ๋ฌธ๋จ์ผ๋ก ์์ฐ์ค๋ฝ๊ฒ ์์ฑํ์ธ์. ๋์์ผ๋ก ๋ฐ๋ก ์์ํ๊ณ , ์ค๋ช
์ ๋ฌธ์ ๊ทธ๋๋ก ์ ํํ๊ฒ ํด์ฃผ์ธ์. ์ดฌ์ ๊ฐ๋
์ด ์ดฌ์ ๋ชฉ๋ก์ ์ค๋ช
ํ๋ ๊ฒ์ฒ๋ผ ์๊ฐํ์ธ์. 200๋จ์ด ์ด๋ด๋ก ์์ฑํ์ธ์.
|
|
|
481 |
|
482 |
+
ํ๋กฌํํธ๋ ๋ค์ ๊ตฌ์กฐ๋ก ์์ฑํ๋ฉด ์ข์ต๋๋ค:
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
|
484 |
+
- ์ฃผ์ ๋์์ ํ ๋ฌธ์ฅ์ผ๋ก ์์
|
485 |
+
- ๊ตฌ์ฒด์ ์ธ ๋์๊ณผ ์ ์ค์ฒ ์ถ๊ฐ
|
486 |
+
- ์บ๋ฆญํฐ/๊ฐ์ฒด์ ์ธ๋ชจ๋ฅผ ์ ํํ ์ค๋ช
|
487 |
+
- ๏ฟฝ๏ฟฝ๊ฒฝ๊ณผ ํ๊ฒฝ ์ธ๋ถ ์ฌํญ ํฌํจ
|
488 |
+
- ์นด๋ฉ๋ผ ๊ฐ๋์ ์์ง์ ์ง์
|
489 |
+
- ์กฐ๋ช
๊ณผ ์์ ์ค๋ช
|
490 |
+
- ๋ณํ๋ ๊ฐ์์ค๋ฌ์ด ์ฌ๊ฑด ๊ธฐ๋ก
|
491 |
|
492 |
+
์์๋ฅผ ์ฐธ๊ณ ํ์ธ์.
|
493 |
|
494 |
+
๐ฎ ๋งค๊ฐ๋ณ์ ๊ฐ์ด๋
|
495 |
+
|
496 |
+
- ํด์๋ ํ๋ฆฌ์
: ์์ธํ ์ฅ๋ฉด์ ๋์ ํด์๋, ๋จ์ํ ์ฅ๋ฉด์ ๋ฎ์ ํด์๋ ์ ํ
|
497 |
+
- Seed: ํน์ ์คํ์ผ์ด๋ ๊ตฌ์ฑ์ ์ฌํํ๊ณ ์ถ์ ๋ seed ๊ฐ ์ ์ฅ
|
498 |
+
- Guidance Scale: 3-3.5๊ฐ ๊ถ์ฅ๊ฐ
|
499 |
+
- Inference Steps: ํ์ง์ ์ํด์๋ 40+ ๋จ๊ณ, ์๋๋ฅผ ์ํด์๋ 20-30 ๋จ๊ณ
|
500 |
"""
|
501 |
)
|
502 |
|
503 |
with gr.Tabs():
|
504 |
# Text to Video Tab
|
505 |
+
with gr.TabItem("ํ
์คํธ๋ก ๋น๋์ค ๋ง๋ค๊ธฐ"):
|
506 |
with gr.Row():
|
507 |
with gr.Column():
|
508 |
txt2vid_prompt = gr.Textbox(
|
509 |
+
label="Step 1: ํ๋กฌํํธ ์
๋ ฅ",
|
510 |
+
placeholder="์์ฑํ๊ณ ์ถ์ ๋น๋์ค๋ฅผ ์ค๋ช
ํ์ธ์ (์ต์ 50์)...",
|
511 |
+
value="๊ฐ์ ๊ธด ๋จธ๋ฆฌ๋ฅผ ๊ฐ์ง ์ฌ์ฑ์ด ๊ธ๋ฐ์ ๊ธด ๋จธ๋ฆฌ๋ฅผ ๊ฐ์ง ๋ค๋ฅธ ์ฌ์ฑ์ ํฅํด ๋ฏธ์์ง์ต๋๋ค. ๊ฐ์ ๋จธ๋ฆฌ์ ์ฌ์ฑ์ ๊ฒ์์ ์์ผ์ ์
๊ณ ์์ผ๋ฉฐ ์ค๋ฅธ์ชฝ ๋บจ์ ์์ ์ ์ด ์์ต๋๋ค. ์นด๋ฉ๋ผ ๊ฐ๋๋ ๊ฐ์ ๋จธ๋ฆฌ ์ฌ์ฑ์ ์ผ๊ตด์ ํด๋ก์ฆ์
๋์ด ์์ต๋๋ค. ์กฐ๋ช
์ ์์ฐ์ค๋ฝ๊ณ ๋ฐ๋ปํ๋ฉฐ, ์์์์ ์ค๋ ๋ฏํ ๋ถ๋๋ฌ์ด ๋น์ด ์ฅ๋ฉด์ ๋น์ถฅ๋๋ค. ์ฅ๋ฉด์ ์ค์ ์์์ฒ๋ผ ๋ณด์
๋๋ค.",
|
512 |
lines=5,
|
513 |
)
|
514 |
txt2vid_enhance_toggle = Toggle(
|
515 |
+
label="ํ๋กฌํํธ ๊ฐ์ ",
|
516 |
value=False,
|
517 |
interactive=True,
|
518 |
)
|
519 |
|
520 |
txt2vid_negative_prompt = gr.Textbox(
|
521 |
+
label="Step 2: ๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ ์
๋ ฅ",
|
522 |
+
placeholder="๋น๋์ค์์ ์ํ์ง ์๋ ์์๋ฅผ ์ค๋ช
ํ์ธ์...",
|
523 |
+
value="๋ฎ์ ํ์ง, ์ต์
์ ํ์ง, ๊ธฐํ, ์๊ณก๋, ์ผ๊ทธ๋ฌ์ง, ๋ชจ์
์ค๋ฏธ์ด, ๋ชจ์
์ํฐํฉํธ, ์ตํฉ๋ ์๊ฐ๋ฝ, ์๋ชป๋ ํด๋ถํ, ์ด์ํ ์, ์ถํ",
|
524 |
lines=2,
|
525 |
)
|
526 |
|
527 |
txt2vid_preset = gr.Dropdown(
|
528 |
choices=[p["label"] for p in preset_options],
|
529 |
value="768x512, 97 frames",
|
530 |
+
label="Step 3.1: ํด์๋ ํ๋ฆฌ์
์ ํ",
|
531 |
)
|
532 |
|
533 |
txt2vid_frame_rate = gr.Slider(
|
534 |
+
label="Step 3.2: ํ๋ ์ ๋ ์ดํธ",
|
535 |
minimum=21,
|
536 |
maximum=30,
|
537 |
step=1,
|
|
|
540 |
|
541 |
txt2vid_advanced = create_advanced_options()
|
542 |
txt2vid_generate = gr.Button(
|
543 |
+
"Step 5: ๋น๋์ค ์์ฑ",
|
544 |
variant="primary",
|
545 |
size="lg",
|
546 |
)
|
547 |
|
548 |
with gr.Column():
|
549 |
+
txt2vid_output = gr.Video(label="์์ฑ๋ ๋น๋์ค")
|
550 |
|
551 |
with gr.Row():
|
552 |
gr.Examples(
|
553 |
examples=[
|
554 |
[
|
555 |
+
"์ ํต์ ์ธ ๋ชฝ๊ณจ ๋๋ ์ค๋ฅผ ์
์ ์ ์ ์ฌ์ฑ์ด ์์ ํฐ์ ์ปคํผ์ ํตํด ํธ๊ธฐ์ฌ๊ณผ ๊ธด์ฅ์ด ์์ธ ํ์ ์ผ๋ก ๋ค์ฌ๋ค๋ณด๊ณ ์์ต๋๋ค. ์ฌ์ฑ์ ํฐ ๊ตฌ์ฌ๋ก ์ฅ์๋ ๋ ๊ฐ์ ๋์ ๋จธ๋ฆฌ๋ก ์คํ์ผ๋ง๋ ๊ธด ๊ฒ์ ๋จธ๋ฆฌ๋ฅผ ํ๊ณ ์์ผ๋ฉฐ, ๋์ ๋๋์ ๋๋ฉฐ ํฌ๊ฒ ๋ ์ ธ ์์ต๋๋ค. ๊ทธ๋
์ ๋๋ ์ค๋ ํ๋ คํ ๊ธ์ ์์๊ฐ ์๊ฒจ์ง ์ ๋ช
ํ ํ๋์์ด๋ฉฐ, ๋น์ทํ ๋์์ธ์ ๋จธ๋ฆฌ๋ ๋ฅผ ํ๊ณ ์์ต๋๋ค. ๋ฐฐ๊ฒฝ์ ์ ๋น๋ก์๊ณผ ํธ๊ธฐ์ฌ์ ์์๋ด๋ ๋จ์ํ ํฐ์ ์ปคํผ์
๋๋ค.",
|
556 |
+
"๋ฎ์ ํ์ง, ์ต์
์ ํ์ง, ๊ธฐํ, ์๊ณก๋, ์ผ๊ทธ๋ฌ์ง, ๋ชจ์
์ค๋ฏธ์ด, ๋ชจ์
์ํฐํฉํธ, ์ตํฉ๋ ์๊ฐ๋ฝ, ์๋ชป๋ ํด๋ถํ, ์ด์ํ ์, ์ถํ",
|
557 |
"assets/t2v_2.mp4",
|
558 |
],
|
559 |
[
|
560 |
+
"๋
ธ๋์ ์ฌํท์ ์
์ ๊ธ๋ฐ ๋จธ๋ฆฌ์ ์ ์ ๋จ์๊ฐ ์ฒ์ ์์ ์ฃผ์๋ฅผ ๋๋ฌ๋ด
๋๋ค. ๊ทธ๋ ๋ฐ์ ํผ๋ถ๋ฅผ ๊ฐ์ก๊ณ ๋จธ๋ฆฌ๋ ๊ฐ์ด๋ฐ ๊ฐ๋ฅด๋ง๋ก ์คํ์ผ๋ง๋์ด ์์ต๋๋ค. ๊ทธ๋ ์ผ์ชฝ์ ๋ณด๊ณ ๋ ํ ์ค๋ฅธ์ชฝ์ ๋ณด๋ฉฐ, ๊ฐ ๋ฐฉํฅ์ ์ ์ ์์ํฉ๋๋ค. ์นด๋ฉ๋ผ๋ ๋ฎ์ ๊ฐ๋์์ ๋จ์๋ฅผ ์ฌ๋ ค๋ค๋ณด๋ฉฐ ๊ณ ์ ๋์ด ์์ต๋๋ค. ๋ฐฐ๊ฒฝ์ ์ฝ๊ฐ ํ๋ฆฟํ๋ฉฐ, ๋
น์ ๋๋ฌด๋ค๊ณผ ๋จ์์ ๋ค์์ ๋ฐ๊ฒ ๋น์น๋ ํ์์ด ๋ณด์
๋๋ค. ์กฐ๋ช
์ ์์ฐ์ค๋ฝ๊ณ ๋ฐ๋ปํ๋ฉฐ, ํ์ ๋น์ด ๋จ์์ ์ผ๊ตด์ ๊ฐ๋ก์ง๋ฅด๋ ๋ ์ฆ ํ๋ ์ด๋ฅผ ๋ง๋ญ๋๋ค. ์ฅ๋ฉด์ ์ค์ ์์์ฒ๋ผ ์ดฌ์๋์์ต๋๋ค.",
|
561 |
+
"๋ฎ์ ํ์ง, ์ต์
์ ํ์ง, ๊ธฐํ, ์๊ณก๋, ์ผ๊ทธ๋ฌ์ง, ๋ชจ์
์ค๋ฏธ์ด, ๋ชจ์
์ํฐํฉํธ, ์ตํฉ๋ ์๊ฐ๋ฝ, ์๋ชป๋ ํด๋ถํ, ์ด์ํ ์, ์ถํ",
|
562 |
"assets/t2v_1.mp4",
|
563 |
],
|
564 |
[
|
565 |
+
"ํ ์ฌ์ดํด๋ฆฌ์คํธ๊ฐ ๊ตฝ์ด์ง ์ฐ๊ธธ์ ๋ฐ๋ผ ๋ฌ๋ฆฝ๋๋ค. ๊ณต๊ธฐ์ญํ์ ์ธ ์ฅ๋น๋ฅผ ์
์ ๊ทธ๋ ๊ฐํ๊ฒ ํ๋ฌ์ ๋ฐ๊ณ ์์ผ๋ฉฐ, ์ด๋ง์๋ ๋๋ฐฉ์ธ์ด ๋ฐ์ง์
๋๋ค. ์นด๋ฉ๋ผ๋ ๊ทธ์ ๊ฒฐ์ฐํ ํ์ ๊ณผ ์จ ๋งํ๋ ํ๊ฒฝ์ ๋ฒ๊ฐ์๊ฐ๋ฉฐ ๋ณด์ฌ์ค๋๋ค. ์๋๋ฌด๋ค์ด ์ค์ณ ์ง๋๊ฐ๊ณ , ํ๋์ ์ ๋ช
ํ ํ๋์์
๋๋ค. ์ด ์ฅ๋ฉด์ ํ๊ธฐ์ฐจ๊ณ ๊ฒฝ์์ ์ธ ๋ถ์๊ธฐ๋ฅผ ์์๋
๋๋ค.",
|
566 |
+
"๋ฎ์ ํ์ง, ์ต์
์ ํ์ง, ๊ธฐํ, ์๊ณก๋, ์ผ๊ทธ๋ฌ์ง, ๋ชจ์
์ค๋ฏธ์ด, ๋ชจ์
์ํฐํฉํธ, ์ตํฉ๋ ์๊ฐ๋ฝ, ์๋ชป๋ ํด๋ถํ, ์ด์ํ ์, ์ถํ",
|
567 |
"assets/t2v_0.mp4",
|
568 |
],
|
569 |
],
|
570 |
inputs=[txt2vid_prompt, txt2vid_negative_prompt, txt2vid_output],
|
571 |
+
label="ํ
์คํธ-๋น๋์ค ์์ฑ ์์",
|
572 |
)
|
573 |
|
574 |
# Image to Video Tab
|
575 |
+
with gr.TabItem("์ด๋ฏธ์ง๋ก ๋น๋์ค ๋ง๋ค๊ธฐ"):
|
576 |
with gr.Row():
|
577 |
with gr.Column():
|
578 |
img2vid_image = gr.Image(
|
579 |
type="filepath",
|
580 |
+
label="Step 1: ์
๋ ฅ ์ด๋ฏธ์ง ์
๋ก๋",
|
581 |
elem_id="image_upload",
|
582 |
)
|
583 |
img2vid_prompt = gr.Textbox(
|
584 |
+
label="Step 2: ํ๋กฌํํธ ์
๋ ฅ",
|
585 |
+
placeholder="์ด๋ฏธ์ง๋ฅผ ์ด๋ป๊ฒ ์ ๋๋ฉ์ด์
ํํ ์ง ์ค๋ช
ํ์ธ์ (์ต์ 50์)...",
|
586 |
+
value="๊ฐ์ ๊ธด ๋จธ๋ฆฌ๋ฅผ ๊ฐ์ง ์ฌ์ฑ์ด ๊ธ๋ฐ์ ๊ธด ๋จธ๋ฆฌ๋ฅผ ๊ฐ์ง ๋ค๋ฅธ ์ฌ์ฑ์ ํฅํด ๋ฏธ์์ง์ต๋๋ค. ๊ฐ์ ๋จธ๋ฆฌ์ ์ฌ์ฑ์ ๊ฒ์์ ์์ผ์ ์
๊ณ ์์ผ๋ฉฐ ์ค๋ฅธ์ชฝ ๋บจ์ ์์ ์ ์ด ์์ต๋๋ค. ์นด๋ฉ๋ผ ๊ฐ๋๋ ๊ฐ์ ๋จธ๋ฆฌ ์ฌ์ฑ์ ์ผ๊ตด์ ํด๋ก์ฆ์
๋์ด ์์ต๋๋ค. ์กฐ๋ช
์ ์์ฐ์ค๋ฝ๊ณ ๋ฐ๋ปํ๋ฉฐ, ์์์์ ์ค๋ ๋ฏํ ๋ถ๋๋ฌ์ด ๋น์ด ์ฅ๋ฉด์ ๋น์ถฅ๋๋ค. ์ฅ๋ฉด์ ์ค์ ์์์ฒ๋ผ ๋ณด์
๋๋ค.",
|
587 |
lines=5,
|
588 |
)
|
589 |
img2vid_enhance_toggle = Toggle(
|
590 |
+
label="ํ๋กฌํํธ ๊ฐ์ ",
|
591 |
value=False,
|
592 |
interactive=True,
|
593 |
)
|
594 |
img2vid_negative_prompt = gr.Textbox(
|
595 |
+
label="Step 3: ๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ ์
๋ ฅ",
|
596 |
+
placeholder="๋น๋์ค์์ ์ํ์ง ์๋ ์์๋ฅผ ์ค๋ช
ํ์ธ์...",
|
597 |
+
value="๋ฎ์ ํ์ง, ์ต์
์ ํ์ง, ๊ธฐํ, ์๊ณก๋, ์ผ๊ทธ๋ฌ์ง, ๋ชจ์
์ค๋ฏธ์ด, ๋ชจ์
์ํฐํฉํธ, ์ตํฉ๋ ์๊ฐ๋ฝ, ์๋ชป๋ ํด๋ถํ, ์ด์ํ ์, ์ถํ",
|
598 |
lines=2,
|
599 |
)
|
600 |
|
601 |
img2vid_preset = gr.Dropdown(
|
602 |
choices=[p["label"] for p in preset_options],
|
603 |
value="768x512, 97 frames",
|
604 |
+
label="Step 3.1: ํด์๋ ํ๋ฆฌ์
์ ํ",
|
605 |
)
|
606 |
|
607 |
img2vid_frame_rate = gr.Slider(
|
608 |
+
label="Step 3.2: ํ๋ ์ ๋ ์ดํธ",
|
609 |
minimum=21,
|
610 |
maximum=30,
|
611 |
step=1,
|
|
|
614 |
|
615 |
img2vid_advanced = create_advanced_options()
|
616 |
img2vid_generate = gr.Button(
|
617 |
+
"Step 6: ๋น๋์ค ์์ฑ", variant="primary", size="lg"
|
618 |
)
|
619 |
|
620 |
with gr.Column():
|
621 |
+
img2vid_output = gr.Video(label="์์ฑ๋ ๋น๋์ค")
|
622 |
|
623 |
with gr.Row():
|
624 |
gr.Examples(
|
625 |
examples=[
|
626 |
[
|
627 |
"assets/i2v_i2.png",
|
628 |
+
"์ฌ์ฑ์ด ํฐ์ ์ ๊ธฐ ๋ฒ๋ ์์์ ๋๋ ๋ฌผ์ด ๋ด๊ธด ๋๋น๋ฅผ ์ ๊ณ ์์ต๋๋ค. ๋ณด๋ผ์ ๋งค๋ํ์ด๋ฅผ ๋ฐ๋ฅธ ๊ทธ๋
์ ์์ด ํ์ ๋๋น ์์์ ๋๋ฌด ์๊ฐ๋ฝ์ ์ํ์ผ๋ก ์์ง์
๋๋ค. ๋๋น๋ ๊ฒ์์ ๋ฒํผ๊ณผ ๋์งํธ ๋์คํ๋ ์ด๊ฐ ์๋ ํฐ์ ์ ๊ธฐ ๋ฒ๋ ์์ ๋์ฌ ์์ต๋๋ค. ๋ฒ๋๋ ์ค๋ฅธ์ชฝ ์๋ ๋ชจ์๋ฆฌ์ ๋นจ๊ฐ์๊ณผ ํฐ์ ์ฒดํฌ๋ฌด๋ฌ ์ฒ์ด ๋ถ๋ถ์ ์ผ๋ก ๋ณด์ด๋ ํฐ์ ์กฐ๋ฆฌ๋ ์์ ๋์ฌ ์์ต๋๋ค. ์นด๋ฉ๋ผ ๊ฐ๋๋ ์ ํํ ์์์ ๋ด๋ ค๋ค๋ณด๋ ๊ฐ๋์ด๋ฉฐ ์ฅ๋ฉด ๋ด๋ด ๊ณ ์ ๋์ด ์์ต๋๋ค. ์กฐ๋ช
์ ๋ฐ๊ณ ๊ณ ๋ฅธ ์ค์ฑ์ ์ธ ํฐ์ ๋น์ผ๋ก ์ฅ๋ฉด์ ๋น์ถฅ๋๋ค. ์ฅ๋ฉด์ ์ค์ ์์์ฒ๋ผ ๋ณด์
๋๋ค.",
|
629 |
+
"๋ฎ์ ํ์ง, ์ต์
์ ํ์ง, ๊ธฐํ, ์๊ณก๋, ์ผ๊ทธ๋ฌ์ง, ๋ชจ์
์ค๋ฏธ์ด, ๋ชจ์
์ํฐํฉํธ, ์ตํฉ๋ ์๊ฐ๋ฝ, ์๋ชป๋ ํด๋ถํ, ์ด์ํ ์, ์ถํ",
|
630 |
"assets/i2v_2.mp4",
|
631 |
],
|
632 |
[
|
633 |
"assets/i2v_i0.png",
|
634 |
+
"๊ธด ํ๋ฅด๋ ๋๋ ์ค๋ฅผ ์
์ ์ฌ์ฑ์ด ๋คํ์ ์์ ๋ฑ์ ์นด๋ฉ๋ผ๋ฅผ ํฅํ ์ฑ ์งํ์ ์ ๋ฐ๋ผ๋ณด๊ณ ์์ต๋๋ค. ๊ทธ๋
์ ๋จธ๋ฆฌ์นด๋ฝ์ ๊ธธ๊ณ ๋ฐ์ผ๋ฉฐ ๋ฑ ์๋๋ก ํ๋ฌ๋ด๋ฆฝ๋๋ค. ๊ทธ๋
๋ ํฐ ์ฐธ๋๋ฌด์ ๋๊ฒ ํผ์ง ๊ฐ์ง ์๋์ ์ ์์ต๋๋ค. ์ผ์ชฝ์ผ๋ก๋ ๋ง๋ผ๋ถ์ ์๋ ์์ ํด๋์ํ ๋ฏธ๊ตญ ์๋์ฐจ๊ฐ ์ฃผ์ฐจ๋์ด ์์ต๋๋ค. ๋ฉ๋ฆฌ์๋ ํ ๋์ ๋ถ์์ง ์๋์ฐจ๊ฐ ์์ผ๋ก ๋์ ์์ต๋๋ค. ์์ ํ๋์ ์ด๋์ด ํ๋์ ๋ฐฐ๊ฒฝ์ผ๋ก ๋ฐ์ ํฐ ๊ตฌ๋ฆ์ด ๊ทน์ ์ธ ์บ๋ฒ์ค๋ฅผ ์ด๋ฃจ๊ณ ์์ต๋๋ค. ์ ์ฒด ์ด๋ฏธ์ง๋ ํ๋ฐฑ์ผ๋ก, ๋น๊ณผ ๊ทธ๋ฆผ์์ ๋๋น๋ฅผ ๊ฐ์กฐํฉ๋๋ค. ์ฌ์ฑ์ด ์ฒ์ฒํ ์๋์ฐจ๋ฅผ ํฅํด ๊ฑธ์ด๊ฐ๊ณ ์์ต๋๋ค.",
|
635 |
+
"๋ฎ์ ํ์ง, ์ต์
์ ํ์ง, ๊ธฐํ, ์๊ณก๋, ์ผ๊ทธ๋ฌ์ง, ๋ชจ์
์ค๋ฏธ์ด, ๋ชจ์
์ํฐํฉํธ, ์ตํฉ๋ ์๊ฐ๋ฝ, ์๋ชป๋ ํด๋ถํ, ์ด์ํ ์, ์ถํ",
|
636 |
"assets/i2v_0.mp4",
|
637 |
],
|
638 |
[
|
639 |
"assets/i2v_i1.png",
|
640 |
+
"ํ ์์ ์์ด ๋์๊ธฐ ๋ฌผ๋ ์์์ ์ ํ ์กฐ๊ฐ์ ๋ชจ์ ์ก์ ์ ์ฐจ์ ์ผ๋ก ์๋ฟ ๋ชจ์์ ๋ง๋ค์ด๊ฐ๊ณ ์์ต๋๋ค. ํ๋ ์ ๋ฐ์ ์ฌ๋์ ์์ด ์ ํ ๋ก ๋ฎ์ฌ ์์ผ๋ฉฐ, ํ์ ํ๋ ๋์๊ธฐ ๋ฌผ๋ ์ค์์ ์ ํ ๋ฉ์ด๋ฆฌ๋ฅผ ๋ถ๋๋ฝ๊ฒ ๋๋ฅด๊ณ ์์ต๋๋ค. ์์ ์ํ์ผ๋ก ์์ง์ด๋ฉฐ, ์ ํ ์์ชฝ์ ์ ์ฐจ์ ์ผ๋ก ์๋ฟ ๋ชจ์์ ๋ง๋ค์ด๊ฐ๋๋ค. ์นด๋ฉ๋ผ๋ ๋์๊ธฐ ๋ฌผ๋ ๋ฐ๋ก ์์ ์์นํ์ฌ ์ ํ ๊ฐ ๋ชจ์ ์กํ๊ฐ๋ ๊ฒ์ ์กฐ๊ฐ๋๋ก ๋ณด์ฌ์ค๋๋ค. ์กฐ๋ช
์ ๋ฐ๊ณ ๊ณ ๋ฅด๋ฉฐ, ์ ํ ์ ๊ทธ๊ฒ์ ๋ค๋ฃจ๋ ์์ ๋ฐ๊ฒ ๋น์ถฅ๋๋ค. ์ฅ๋ฉด์ ์ค์ ์์์ฒ๋ผ ์ดฌ์๋์์ต๋๋ค.",
|
641 |
+
"๋ฎ์ ํ์ง, ์ต์
์ ํ์ง, ๊ธฐํ, ์๊ณก๋, ์ผ๊ทธ๋ฌ์ง, ๋ชจ์
์ค๋ฏธ์ด, ๋ชจ์
์ํฐํฉํธ, ์ตํฉ๋ ์๊ฐ๋ฝ, ์๋ชป๋ ํด๋ถํ, ์ด์ํ ์, ์ถํ",
|
642 |
"assets/i2v_1.mp4",
|
643 |
],
|
644 |
],
|
|
|
648 |
img2vid_negative_prompt,
|
649 |
img2vid_output,
|
650 |
],
|
651 |
+
label="์ด๋ฏธ์ง-๋น๋์ค ์์ฑ ์์",
|
652 |
)
|
653 |
|
654 |
+
# Event handlers
|
655 |
txt2vid_preset.change(
|
656 |
fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[3:]
|
657 |
)
|
|
|
694 |
if __name__ == "__main__":
|
695 |
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
|
696 |
share=True, show_api=False
|
697 |
+
)
|