wufan's picture
Upload 119 files
8a8d449 verified
import math
from io import BytesIO
import cv2
import numpy as np
from PIL import Image, ImageOps, ImageDraw
from pkg_resources import resource_filename
from wand.image import Image as WandImage
import albumentations as alb
from .ops import plasma_fractal
class Fog(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
w, h = img.size
c = [(1.5, 2), (2., 2), (2.5, 1.7)]
if self.mag < 0 or self.mag >= len(c):
index = self.rng.integers(0, len(c))
else:
index = self.mag
c = c[index]
n_channels = len(img.getbands())
isgray = n_channels == 1
img = np.asarray(img) / 255.
max_val = img.max()
# Make sure fog image is at least twice the size of the input image
max_size = 2 ** math.ceil(math.log2(max(w, h)) + 1)
fog = c[0] * plasma_fractal(mapsize=max_size, wibbledecay=c[1], rng=self.rng)[:h, :w][..., np.newaxis]
# x += c[0] * plasma_fractal(wibbledecay=c[1])[:224, :224][..., np.newaxis]
# return np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255
if isgray:
fog = np.squeeze(fog)
else:
fog = np.repeat(fog, 3, axis=2)
img += fog
img = np.clip(img * max_val / (max_val + c[0]), 0, 1) * 255
return img.astype(np.uint8)
class Frost(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
w, h = img.size
c = [(0.78, 0.22), (0.64, 0.36), (0.5, 0.5)]
if self.mag < 0 or self.mag >= len(c):
index = self.rng.integers(0, len(c))
else:
index = self.mag
c = c[index]
filename = [resource_filename(__name__, 'frost/frost1.png'),
resource_filename(__name__, 'frost/frost2.png'),
resource_filename(__name__, 'frost/frost3.png'),
resource_filename(__name__, 'frost/frost4.jpg'),
resource_filename(__name__, 'frost/frost5.jpg'),
resource_filename(__name__, 'frost/frost6.jpg')]
index = self.rng.integers(0, len(filename))
filename = filename[index]
# Some images have transparency. Remove alpha channel.
frost = Image.open(filename).convert('RGB')
# Resize the frost image to match the input image's dimensions
f_w, f_h = frost.size
if w / h > f_w / f_h:
f_h = round(f_h * w / f_w)
f_w = w
else:
f_w = round(f_w * h / f_h)
f_h = h
frost = np.asarray(frost.resize((f_w, f_h)))
# randomly crop
y_start, x_start = self.rng.integers(0, f_h - h + 1), self.rng.integers(0, f_w - w + 1)
frost = frost[y_start:y_start + h, x_start:x_start + w]
n_channels = len(img.getbands())
isgray = n_channels == 1
img = np.asarray(img)
if isgray:
img = np.expand_dims(img, axis=2)
img = np.repeat(img, 3, axis=2)
img = np.clip(np.round(c[0] * img + c[1] * frost), 0, 255)
img = img.astype(np.uint8)
if isgray:
img = np.squeeze(img)
return img
class Snow(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
w, h = img.size
c = [(0.1, 0.3, 3, 0.5, 10, 4, 0.8),
(0.2, 0.3, 2, 0.5, 12, 4, 0.7),
(0.55, 0.3, 4, 0.9, 12, 8, 0.7)]
if self.mag < 0 or self.mag >= len(c):
index = self.rng.integers(0, len(c))
else:
index = self.mag
c = c[index]
n_channels = len(img.getbands())
isgray = n_channels == 1
img = np.asarray(img, dtype=np.float32) / 255.
if isgray:
img = np.expand_dims(img, axis=2)
img = np.repeat(img, 3, axis=2)
snow_layer = self.rng.normal(size=img.shape[:2], loc=c[0], scale=c[1]) # [:2] for monochrome
# snow_layer = clipped_zoom(snow_layer[..., np.newaxis], c[2])
snow_layer[snow_layer < c[3]] = 0
snow_layer = Image.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L')
output = BytesIO()
snow_layer.save(output, format='PNG')
snow_layer = WandImage(blob=output.getvalue())
snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=self.rng.uniform(-135, -45))
snow_layer = cv2.imdecode(np.frombuffer(snow_layer.make_blob(), np.uint8),
cv2.IMREAD_UNCHANGED) / 255.
# snow_layer = cv2.cvtColor(snow_layer, cv2.COLOR_BGR2RGB)
snow_layer = snow_layer[..., np.newaxis]
img = c[6] * img
gray_img = (1 - c[6]) * np.maximum(img, cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).reshape(h, w, 1) * 1.5 + 0.5)
img += gray_img
img = np.clip(img + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255
img = img.astype(np.uint8)
if isgray:
img = np.squeeze(img)
return img
class Rain(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
img = img.copy()
w, h = img.size
n_channels = len(img.getbands())
isgray = n_channels == 1
line_width = self.rng.integers(1, 2)
c = [50, 70, 90]
if self.mag < 0 or self.mag >= len(c):
index = 0
else:
index = self.mag
c = c[index]
n_rains = self.rng.integers(c, c + 20)
slant = self.rng.integers(-60, 60)
fillcolor = 200 if isgray else (200, 200, 200)
draw = ImageDraw.Draw(img)
max_length = min(w, h, 10)
for i in range(1, n_rains):
length = self.rng.integers(5, max_length)
x1 = self.rng.integers(0, w - length)
y1 = self.rng.integers(0, h - length)
x2 = x1 + length * math.sin(slant * math.pi / 180.)
y2 = y1 + length * math.cos(slant * math.pi / 180.)
x2 = int(x2)
y2 = int(y2)
draw.line([(x1, y1), (x2, y2)], width=line_width, fill=fillcolor)
img = np.asarray(img).astype(np.uint8)
return img
class Shadow(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
# img = img.copy()
w, h = img.size
n_channels = len(img.getbands())
isgray = n_channels == 1
c = [64, 96, 128]
if self.mag < 0 or self.mag >= len(c):
index = 0
else:
index = self.mag
c = c[index]
img = img.convert('RGBA')
overlay = Image.new('RGBA', img.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(overlay)
transparency = self.rng.integers(c, c + 32)
x1 = self.rng.integers(0, w // 2)
y1 = 0
x2 = self.rng.integers(w // 2, w)
y2 = 0
x3 = self.rng.integers(w // 2, w)
y3 = h - 1
x4 = self.rng.integers(0, w // 2)
y4 = h - 1
draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x4, y4)], fill=(0, 0, 0, transparency))
img = Image.alpha_composite(img, overlay)
img = img.convert("RGB")
if isgray:
img = ImageOps.grayscale(img)
img = np.asarray(img).astype(np.uint8)
return img