import math from io import BytesIO import cv2 import numpy as np from PIL import Image, ImageOps, ImageDraw from pkg_resources import resource_filename from wand.image import Image as WandImage import albumentations as alb from .ops import plasma_fractal class Fog(alb.ImageOnlyTransform): def __init__(self, mag=-1, always_apply=False, p=1.): super().__init__(always_apply=always_apply, p=p) self.rng = np.random.default_rng() self.mag = mag def apply(self, img, **params): img = Image.fromarray(img.astype(np.uint8)) w, h = img.size c = [(1.5, 2), (2., 2), (2.5, 1.7)] if self.mag < 0 or self.mag >= len(c): index = self.rng.integers(0, len(c)) else: index = self.mag c = c[index] n_channels = len(img.getbands()) isgray = n_channels == 1 img = np.asarray(img) / 255. max_val = img.max() # Make sure fog image is at least twice the size of the input image max_size = 2 ** math.ceil(math.log2(max(w, h)) + 1) fog = c[0] * plasma_fractal(mapsize=max_size, wibbledecay=c[1], rng=self.rng)[:h, :w][..., np.newaxis] # x += c[0] * plasma_fractal(wibbledecay=c[1])[:224, :224][..., np.newaxis] # return np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255 if isgray: fog = np.squeeze(fog) else: fog = np.repeat(fog, 3, axis=2) img += fog img = np.clip(img * max_val / (max_val + c[0]), 0, 1) * 255 return img.astype(np.uint8) class Frost(alb.ImageOnlyTransform): def __init__(self, mag=-1, always_apply=False, p=1.): super().__init__(always_apply=always_apply, p=p) self.rng = np.random.default_rng() self.mag = mag def apply(self, img, **params): img = Image.fromarray(img.astype(np.uint8)) w, h = img.size c = [(0.78, 0.22), (0.64, 0.36), (0.5, 0.5)] if self.mag < 0 or self.mag >= len(c): index = self.rng.integers(0, len(c)) else: index = self.mag c = c[index] filename = [resource_filename(__name__, 'frost/frost1.png'), resource_filename(__name__, 'frost/frost2.png'), resource_filename(__name__, 'frost/frost3.png'), resource_filename(__name__, 'frost/frost4.jpg'), resource_filename(__name__, 'frost/frost5.jpg'), resource_filename(__name__, 'frost/frost6.jpg')] index = self.rng.integers(0, len(filename)) filename = filename[index] # Some images have transparency. Remove alpha channel. frost = Image.open(filename).convert('RGB') # Resize the frost image to match the input image's dimensions f_w, f_h = frost.size if w / h > f_w / f_h: f_h = round(f_h * w / f_w) f_w = w else: f_w = round(f_w * h / f_h) f_h = h frost = np.asarray(frost.resize((f_w, f_h))) # randomly crop y_start, x_start = self.rng.integers(0, f_h - h + 1), self.rng.integers(0, f_w - w + 1) frost = frost[y_start:y_start + h, x_start:x_start + w] n_channels = len(img.getbands()) isgray = n_channels == 1 img = np.asarray(img) if isgray: img = np.expand_dims(img, axis=2) img = np.repeat(img, 3, axis=2) img = np.clip(np.round(c[0] * img + c[1] * frost), 0, 255) img = img.astype(np.uint8) if isgray: img = np.squeeze(img) return img class Snow(alb.ImageOnlyTransform): def __init__(self, mag=-1, always_apply=False, p=1.): super().__init__(always_apply=always_apply, p=p) self.rng = np.random.default_rng() self.mag = mag def apply(self, img, **params): img = Image.fromarray(img.astype(np.uint8)) w, h = img.size c = [(0.1, 0.3, 3, 0.5, 10, 4, 0.8), (0.2, 0.3, 2, 0.5, 12, 4, 0.7), (0.55, 0.3, 4, 0.9, 12, 8, 0.7)] if self.mag < 0 or self.mag >= len(c): index = self.rng.integers(0, len(c)) else: index = self.mag c = c[index] n_channels = len(img.getbands()) isgray = n_channels == 1 img = np.asarray(img, dtype=np.float32) / 255. if isgray: img = np.expand_dims(img, axis=2) img = np.repeat(img, 3, axis=2) snow_layer = self.rng.normal(size=img.shape[:2], loc=c[0], scale=c[1]) # [:2] for monochrome # snow_layer = clipped_zoom(snow_layer[..., np.newaxis], c[2]) snow_layer[snow_layer < c[3]] = 0 snow_layer = Image.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L') output = BytesIO() snow_layer.save(output, format='PNG') snow_layer = WandImage(blob=output.getvalue()) snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=self.rng.uniform(-135, -45)) snow_layer = cv2.imdecode(np.frombuffer(snow_layer.make_blob(), np.uint8), cv2.IMREAD_UNCHANGED) / 255. # snow_layer = cv2.cvtColor(snow_layer, cv2.COLOR_BGR2RGB) snow_layer = snow_layer[..., np.newaxis] img = c[6] * img gray_img = (1 - c[6]) * np.maximum(img, cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).reshape(h, w, 1) * 1.5 + 0.5) img += gray_img img = np.clip(img + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255 img = img.astype(np.uint8) if isgray: img = np.squeeze(img) return img class Rain(alb.ImageOnlyTransform): def __init__(self, mag=-1, always_apply=False, p=1.): super().__init__(always_apply=always_apply, p=p) self.rng = np.random.default_rng() self.mag = mag def apply(self, img, **params): img = Image.fromarray(img.astype(np.uint8)) img = img.copy() w, h = img.size n_channels = len(img.getbands()) isgray = n_channels == 1 line_width = self.rng.integers(1, 2) c = [50, 70, 90] if self.mag < 0 or self.mag >= len(c): index = 0 else: index = self.mag c = c[index] n_rains = self.rng.integers(c, c + 20) slant = self.rng.integers(-60, 60) fillcolor = 200 if isgray else (200, 200, 200) draw = ImageDraw.Draw(img) max_length = min(w, h, 10) for i in range(1, n_rains): length = self.rng.integers(5, max_length) x1 = self.rng.integers(0, w - length) y1 = self.rng.integers(0, h - length) x2 = x1 + length * math.sin(slant * math.pi / 180.) y2 = y1 + length * math.cos(slant * math.pi / 180.) x2 = int(x2) y2 = int(y2) draw.line([(x1, y1), (x2, y2)], width=line_width, fill=fillcolor) img = np.asarray(img).astype(np.uint8) return img class Shadow(alb.ImageOnlyTransform): def __init__(self, mag=-1, always_apply=False, p=1.): super().__init__(always_apply=always_apply, p=p) self.rng = np.random.default_rng() self.mag = mag def apply(self, img, **params): img = Image.fromarray(img.astype(np.uint8)) # img = img.copy() w, h = img.size n_channels = len(img.getbands()) isgray = n_channels == 1 c = [64, 96, 128] if self.mag < 0 or self.mag >= len(c): index = 0 else: index = self.mag c = c[index] img = img.convert('RGBA') overlay = Image.new('RGBA', img.size, (255, 255, 255, 0)) draw = ImageDraw.Draw(overlay) transparency = self.rng.integers(c, c + 32) x1 = self.rng.integers(0, w // 2) y1 = 0 x2 = self.rng.integers(w // 2, w) y2 = 0 x3 = self.rng.integers(w // 2, w) y3 = h - 1 x4 = self.rng.integers(0, w // 2) y4 = h - 1 draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x4, y4)], fill=(0, 0, 0, transparency)) img = Image.alpha_composite(img, overlay) img = img.convert("RGB") if isgray: img = ImageOps.grayscale(img) img = np.asarray(img).astype(np.uint8) return img