Spaces:
Running
Running
File size: 8,352 Bytes
8a8d449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import math
from io import BytesIO
import cv2
import numpy as np
from PIL import Image, ImageOps, ImageDraw
from pkg_resources import resource_filename
from wand.image import Image as WandImage
import albumentations as alb
from .ops import plasma_fractal
class Fog(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
w, h = img.size
c = [(1.5, 2), (2., 2), (2.5, 1.7)]
if self.mag < 0 or self.mag >= len(c):
index = self.rng.integers(0, len(c))
else:
index = self.mag
c = c[index]
n_channels = len(img.getbands())
isgray = n_channels == 1
img = np.asarray(img) / 255.
max_val = img.max()
# Make sure fog image is at least twice the size of the input image
max_size = 2 ** math.ceil(math.log2(max(w, h)) + 1)
fog = c[0] * plasma_fractal(mapsize=max_size, wibbledecay=c[1], rng=self.rng)[:h, :w][..., np.newaxis]
# x += c[0] * plasma_fractal(wibbledecay=c[1])[:224, :224][..., np.newaxis]
# return np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255
if isgray:
fog = np.squeeze(fog)
else:
fog = np.repeat(fog, 3, axis=2)
img += fog
img = np.clip(img * max_val / (max_val + c[0]), 0, 1) * 255
return img.astype(np.uint8)
class Frost(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
w, h = img.size
c = [(0.78, 0.22), (0.64, 0.36), (0.5, 0.5)]
if self.mag < 0 or self.mag >= len(c):
index = self.rng.integers(0, len(c))
else:
index = self.mag
c = c[index]
filename = [resource_filename(__name__, 'frost/frost1.png'),
resource_filename(__name__, 'frost/frost2.png'),
resource_filename(__name__, 'frost/frost3.png'),
resource_filename(__name__, 'frost/frost4.jpg'),
resource_filename(__name__, 'frost/frost5.jpg'),
resource_filename(__name__, 'frost/frost6.jpg')]
index = self.rng.integers(0, len(filename))
filename = filename[index]
# Some images have transparency. Remove alpha channel.
frost = Image.open(filename).convert('RGB')
# Resize the frost image to match the input image's dimensions
f_w, f_h = frost.size
if w / h > f_w / f_h:
f_h = round(f_h * w / f_w)
f_w = w
else:
f_w = round(f_w * h / f_h)
f_h = h
frost = np.asarray(frost.resize((f_w, f_h)))
# randomly crop
y_start, x_start = self.rng.integers(0, f_h - h + 1), self.rng.integers(0, f_w - w + 1)
frost = frost[y_start:y_start + h, x_start:x_start + w]
n_channels = len(img.getbands())
isgray = n_channels == 1
img = np.asarray(img)
if isgray:
img = np.expand_dims(img, axis=2)
img = np.repeat(img, 3, axis=2)
img = np.clip(np.round(c[0] * img + c[1] * frost), 0, 255)
img = img.astype(np.uint8)
if isgray:
img = np.squeeze(img)
return img
class Snow(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
w, h = img.size
c = [(0.1, 0.3, 3, 0.5, 10, 4, 0.8),
(0.2, 0.3, 2, 0.5, 12, 4, 0.7),
(0.55, 0.3, 4, 0.9, 12, 8, 0.7)]
if self.mag < 0 or self.mag >= len(c):
index = self.rng.integers(0, len(c))
else:
index = self.mag
c = c[index]
n_channels = len(img.getbands())
isgray = n_channels == 1
img = np.asarray(img, dtype=np.float32) / 255.
if isgray:
img = np.expand_dims(img, axis=2)
img = np.repeat(img, 3, axis=2)
snow_layer = self.rng.normal(size=img.shape[:2], loc=c[0], scale=c[1]) # [:2] for monochrome
# snow_layer = clipped_zoom(snow_layer[..., np.newaxis], c[2])
snow_layer[snow_layer < c[3]] = 0
snow_layer = Image.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L')
output = BytesIO()
snow_layer.save(output, format='PNG')
snow_layer = WandImage(blob=output.getvalue())
snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=self.rng.uniform(-135, -45))
snow_layer = cv2.imdecode(np.frombuffer(snow_layer.make_blob(), np.uint8),
cv2.IMREAD_UNCHANGED) / 255.
# snow_layer = cv2.cvtColor(snow_layer, cv2.COLOR_BGR2RGB)
snow_layer = snow_layer[..., np.newaxis]
img = c[6] * img
gray_img = (1 - c[6]) * np.maximum(img, cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).reshape(h, w, 1) * 1.5 + 0.5)
img += gray_img
img = np.clip(img + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255
img = img.astype(np.uint8)
if isgray:
img = np.squeeze(img)
return img
class Rain(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
img = img.copy()
w, h = img.size
n_channels = len(img.getbands())
isgray = n_channels == 1
line_width = self.rng.integers(1, 2)
c = [50, 70, 90]
if self.mag < 0 or self.mag >= len(c):
index = 0
else:
index = self.mag
c = c[index]
n_rains = self.rng.integers(c, c + 20)
slant = self.rng.integers(-60, 60)
fillcolor = 200 if isgray else (200, 200, 200)
draw = ImageDraw.Draw(img)
max_length = min(w, h, 10)
for i in range(1, n_rains):
length = self.rng.integers(5, max_length)
x1 = self.rng.integers(0, w - length)
y1 = self.rng.integers(0, h - length)
x2 = x1 + length * math.sin(slant * math.pi / 180.)
y2 = y1 + length * math.cos(slant * math.pi / 180.)
x2 = int(x2)
y2 = int(y2)
draw.line([(x1, y1), (x2, y2)], width=line_width, fill=fillcolor)
img = np.asarray(img).astype(np.uint8)
return img
class Shadow(alb.ImageOnlyTransform):
def __init__(self, mag=-1, always_apply=False, p=1.):
super().__init__(always_apply=always_apply, p=p)
self.rng = np.random.default_rng()
self.mag = mag
def apply(self, img, **params):
img = Image.fromarray(img.astype(np.uint8))
# img = img.copy()
w, h = img.size
n_channels = len(img.getbands())
isgray = n_channels == 1
c = [64, 96, 128]
if self.mag < 0 or self.mag >= len(c):
index = 0
else:
index = self.mag
c = c[index]
img = img.convert('RGBA')
overlay = Image.new('RGBA', img.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(overlay)
transparency = self.rng.integers(c, c + 32)
x1 = self.rng.integers(0, w // 2)
y1 = 0
x2 = self.rng.integers(w // 2, w)
y2 = 0
x3 = self.rng.integers(w // 2, w)
y3 = h - 1
x4 = self.rng.integers(0, w // 2)
y4 = h - 1
draw.polygon([(x1, y1), (x2, y2), (x3, y3), (x4, y4)], fill=(0, 0, 0, transparency))
img = Image.alpha_composite(img, overlay)
img = img.convert("RGB")
if isgray:
img = ImageOps.grayscale(img)
img = np.asarray(img).astype(np.uint8)
return img
|