Tarsier2-7b / models /modeling_tarsier.py
omni-research's picture
update to tarsier2-7b-0115
dcd4560
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union, Dict, Any
import math
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
from transformers import PreTrainedModel, AutoConfig, AutoModel
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.modeling_outputs import ModelOutput
from transformers.utils import logging
from transformers.configuration_utils import PretrainedConfig
from transformers.dynamic_module_utils import get_class_from_dynamic_module
from transformers.models.auto import AutoModel, AutoModelForCausalLM, CONFIG_MAPPING
from transformers.generation import GenerationMixin
from transformers import LlamaForCausalLM, Qwen2ForCausalLM
# from models.modeling_qwen2 import Qwen2ForCausalLM
from models.modeling_qwen2_vl_fast import Qwen2VLForCausalLM
from models.utils import _pad_input, _unpad_input
logger = logging.get_logger(__name__)
class LlavaConfig(PretrainedConfig):
model_type = "llava"
is_composition = False
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32000,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
image_newline_idx=32002,
image_new_idx=32003,
projection_head="MLP",
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.image_newline_idx = image_newline_idx
self.image_new_idx = image_new_idx
self.projection_head = projection_head
self.vision_config = vision_config
if isinstance(self.vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
if 'auto_map' in vision_config:
repo_id, class_ref = vision_config['auto_map']['AutoConfig'].split("--")
config_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
self.vision_config = config_class(**vision_config)
elif vision_config["model_type"] in CONFIG_MAPPING:
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
else:
raise ValueError(f'vision_config["model_type"] = {vision_config["model_type"]} not supported!')
self.text_config = text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
if 'auto_map' in text_config:
repo_id, class_ref = text_config['auto_map']['AutoConfig'].split("--")
config_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
self.text_config = config_class(**text_config)
elif text_config["model_type"] in CONFIG_MAPPING:
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
else:
raise ValueError(f'text_config["model_type"] = {text_config["model_type"]} not supported!')
super().__init__(**kwargs)
@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
class LlavaCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
position_ids: Optional[torch.LongTensor] = None
def add_split_tokens(image_features, image_newline_embed, image_new_embed):
num_images, num_image_patches, embed_dim = image_features.shape
num_height_patches, num_width_patches = int(math.sqrt(num_image_patches)), int(math.sqrt(num_image_patches))
# add image_newline
image_features = image_features.view(num_images, num_height_patches, num_width_patches, embed_dim)
image_features = torch.cat([
image_features,
image_newline_embed.expand((num_images, num_height_patches, 1, embed_dim))
], dim=2)
num_image_patches += num_height_patches
image_features = image_features.view(num_images, num_image_patches, embed_dim)
# add image_new
image_features = torch.cat([
image_features,
image_new_embed.expand((num_images, 1, embed_dim))
], dim = 1)
return image_features
class LlavaMultiModalProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.config = config
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long)
image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long)
self.register_buffer('image_newline_idx', image_newline_idx, persistent=False)
self.register_buffer('image_new_idx', image_new_idx, persistent=False)
def forward(self, image_features, input_embeddings):
selected_image_feature = image_features[self.config.vision_feature_layer]
if self.config.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.config.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise ValueError(
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
)
hidden_states = self.linear_1(selected_image_feature)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
image_newline_embed = input_embeddings(self.image_newline_idx).squeeze()
image_new_embed = input_embeddings(self.image_new_idx).squeeze()
hidden_states = add_split_tokens(hidden_states, image_newline_embed, image_new_embed)
return hidden_states
class PixelShuffleMultiModalProjector(nn.Module):
def __init__(self, config: LlavaConfig):
super().__init__()
self.config = config
self.downsample_ratio = 0.5
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.text_config.hidden_size
self.mlp = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long)
image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long)
self.register_buffer('image_newline_idx', image_newline_idx, persistent=False)
self.register_buffer('image_new_idx', image_new_idx, persistent=False)
def forward(self, image_features, input_embeddings):
selected_image_feature = image_features[self.config.vision_feature_layer]
if self.config.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.config.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise ValueError(
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
)
image_features = self.pixel_shuffle(selected_image_feature)
hidden_states = self.mlp(image_features)
image_newline_embed = input_embeddings(self.image_newline_idx).squeeze()
image_new_embed = input_embeddings(self.image_new_idx).squeeze()
hidden_states = add_split_tokens(hidden_states, image_newline_embed, image_new_embed)
return hidden_states
def pixel_shuffle(self, x, scale_factor=0.5):
if scale_factor == 1:
return x
n, wh, c = x.shape
h, w = int(math.sqrt(wh)), int(math.sqrt(wh))
x = x.view(n, h, w, c)
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(x.shape[0], -1, x.shape[-1])
return x
LLAVA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LlavaConfig`] or [`LlavaVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
class TarsierPreTrainedModel(PreTrainedModel):
config_class = LlavaConfig
base_model_prefix = "llm"
supports_gradient_checkpointing = True # TODO: support latest gc
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_cache_class = True # TODO: support different cache
_supports_static_cache = True
def _init_weights(self, module):
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.fill_(1.0)
if module.bias is not None:
module.bias.data.zero_()
@property
def _no_split_modules(self):
return self.language_model._no_split_modules + self.vision_tower._no_split_modules
class TarsierForConditionalGeneration(TarsierPreTrainedModel, GenerationMixin):
def __init__(self, config: LlavaConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config, trust_remote_code=True)
if config.text_config.model_type == 'qwen2':
self.language_model = Qwen2ForCausalLM(config.text_config)
elif config.text_config.model_type == 'qwen2_vl':
self.language_model = Qwen2VLForCausalLM(config.text_config)
elif config.text_config.model_type == 'llama':
self.language_model = LlamaForCausalLM(config.text_config)
else:
raise ValueError(f'{config.text_config.model_type} not supported!')
if config.projection_head == 'Pixel_Shuffle':
self.multi_modal_projector = PixelShuffleMultiModalProjector(config)
elif config.projection_head == 'MLP':
self.multi_modal_projector = LlavaMultiModalProjector(config)
elif config.projection_head == 'auto_map':
repo_id, class_ref = config.auto_map['ProjectionLayer'].split("--")
model_class = get_class_from_dynamic_module(class_ref, repo_id)
self.multi_modal_projector = model_class(config)
elif config.projection_head is None:
self.multi_modal_projector = lambda x, *args, **kwargs: x
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
return model_embeds
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
pixel_values: torch.FloatTensor = None,
image_grid_thw: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
num_images: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_rmpad: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You must specify input_ids")
bsz, max_seq_len = input_ids.shape[0], input_ids.shape[1]
if max_seq_len > 1:
special_image_mask = input_ids == self.config.image_token_index
print(f'[{input_ids.device}] num_images: {num_images.tolist()} num_image_tokens: {special_image_mask.sum(-1).tolist()}', flush=True)
if position_ids is None:
if 'Qwen2VLForCausalLM' in self.language_model.__class__.__name__:
position_ids = self.language_model.get_rope_index(input_ids, image_grid_thw, attention_mask) # [bsz, seqlen, 3]
else:
position_ids = attention_mask.long().cumsum(-1) - 1 # # [bsz, seqlen]
position_ids.masked_fill_(attention_mask == 0, 1)
if use_rmpad:
input_ids, input_ids_indices, cu_seqlens, _ = _unpad_input(input_ids, attention_mask) # [bsz, seqlen] -> [1, seqlen]
position_ids, _, _, _ = _unpad_input(position_ids, attention_mask)
input_ids, position_ids = input_ids.unsqueeze(0), position_ids.unsqueeze(0)
else:
input_ids_indices, cu_seqlens = None, None
inputs_embeds = self.get_input_embeddings()(input_ids) # [1, seqlen, dim]
image_features = None
if pixel_values is not None: # training / first step in generation
if 'Qwen2VLForCausalLM' in self.language_model.__class__.__name__:
pixel_values = pixel_values.type(self.vision_tower.get_dtype())
image_features = self.vision_tower(pixel_values, image_grid_thw)
else:
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
image_features = self.multi_modal_projector(
image_outputs.hidden_states,
self.get_input_embeddings(),
)
special_image_mask = input_ids == self.config.image_token_index
if special_image_mask.sum() > 0:
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(
special_image_mask.unsqueeze(-1).expand_as(inputs_embeds),
image_features
)
else:
inputs_embeds = image_features.sum(dim=(0,1)) * 0. + inputs_embeds
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_rmpad=use_rmpad,
cu_seqlens=cu_seqlens,
)
logits = outputs[0]
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
if use_rmpad:
labels = labels.view(-1)[input_ids_indices.long()]
shift_labels = torch.cat((labels[1:], labels.new_ones((1))*-100))
shift_labels.requires_grad = False
lbl_seq_lens = (cu_seqlens[1:]-1).long()
shift_labels[lbl_seq_lens] = -100
loss = loss_fct(logits.squeeze(0), shift_labels)
else:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
shift_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
elif use_rmpad: # 训练的时候,就不 unpad logits 了,节省显存。
logits = _pad_input(logits.squeeze(0), input_ids_indices, bsz, max_seq_len)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return LlavaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
position_ids=position_ids,
)
def prepare_inputs_for_generation(
self,
input_ids,
attention_mask=None,
position_ids=None,
past_key_values=None,
cache_position=None,
use_cache=True,
pixel_values=None,
image_grid_thw=None,
**kwargs,
):
if past_key_values is not None:
past_length = past_key_values.get_seq_length()
input_ids = input_ids[:, past_length:]
model_inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
if kwargs.get('num_images') is not None:
model_inputs['num_images'] = kwargs['num_images']
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
model_inputs["image_grid_thw"] = image_grid_thw
else:
model_inputs['position_ids'] = position_ids[:, -1, ...].unsqueeze(1).to(device=input_ids.device) + 1
return model_inputs
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
model_kwargs = super()._update_model_kwargs_for_generation(
outputs=outputs,
model_kwargs=model_kwargs,
is_encoder_decoder=is_encoder_decoder,
num_new_tokens=num_new_tokens,
)
if getattr(outputs, "position_ids", None) is not None:
model_kwargs["position_ids"] = outputs.position_ids
return model_kwargs