File size: 21,781 Bytes
97a05c0
dcd4560
97a05c0
 
 
 
 
 
dcd4560
97a05c0
 
 
dcd4560
97a05c0
dcd4560
 
 
97a05c0
dcd4560
 
 
 
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
97a05c0
 
 
 
 
 
 
 
 
dcd4560
97a05c0
 
 
 
 
 
 
dcd4560
 
 
 
 
 
 
 
 
97a05c0
 
 
 
dcd4560
 
 
 
 
 
 
 
 
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
 
 
 
 
dcd4560
97a05c0
 
 
 
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
 
dcd4560
 
 
 
97a05c0
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
 
97a05c0
 
dcd4560
 
 
97a05c0
 
 
 
 
 
 
 
 
 
 
dcd4560
97a05c0
 
 
 
 
 
 
dcd4560
 
 
 
97a05c0
dcd4560
 
97a05c0
 
dcd4560
97a05c0
 
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcd4560
 
97a05c0
 
dcd4560
97a05c0
 
 
 
dcd4560
97a05c0
 
dcd4560
97a05c0
 
 
 
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
dcd4560
 
97a05c0
dcd4560
 
 
 
 
97a05c0
dcd4560
 
 
 
 
 
 
 
 
 
 
 
97a05c0
dcd4560
 
97a05c0
 
 
 
 
 
 
 
 
dcd4560
 
97a05c0
 
 
 
 
 
dcd4560
 
 
 
 
 
 
 
97a05c0
dcd4560
97a05c0
 
dcd4560
 
 
 
 
 
 
 
97a05c0
 
 
 
 
 
 
 
 
 
 
dcd4560
97a05c0
 
 
dcd4560
 
 
 
 
 
 
 
 
 
97a05c0
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a05c0
dcd4560
97a05c0
 
dcd4560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union, Dict, Any
import math

import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F

from transformers import PreTrainedModel, AutoConfig, AutoModel
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.modeling_outputs import ModelOutput
from transformers.utils import logging
from transformers.configuration_utils import PretrainedConfig
from transformers.dynamic_module_utils import get_class_from_dynamic_module
from transformers.models.auto import AutoModel, AutoModelForCausalLM, CONFIG_MAPPING
from transformers.generation import GenerationMixin

from transformers import LlamaForCausalLM, Qwen2ForCausalLM
# from models.modeling_qwen2 import Qwen2ForCausalLM
from models.modeling_qwen2_vl_fast import Qwen2VLForCausalLM
from models.utils import _pad_input, _unpad_input

logger = logging.get_logger(__name__)


class LlavaConfig(PretrainedConfig):

    model_type = "llava"
    is_composition = False

    def __init__(
        self,
        vision_config=None,
        text_config=None,
        ignore_index=-100,
        image_token_index=32000,
        projector_hidden_act="gelu",
        vision_feature_select_strategy="default",
        vision_feature_layer=-2,
        image_newline_idx=32002,
        image_new_idx=32003,
        projection_head="MLP",
        **kwargs,
    ):
        self.ignore_index = ignore_index
        self.image_token_index = image_token_index
        self.projector_hidden_act = projector_hidden_act
        self.vision_feature_select_strategy = vision_feature_select_strategy
        self.vision_feature_layer = vision_feature_layer
        self.image_newline_idx = image_newline_idx
        self.image_new_idx = image_new_idx
        self.projection_head = projection_head

        self.vision_config = vision_config

        if isinstance(self.vision_config, dict):
            vision_config["model_type"] = (
                vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
            )
            if 'auto_map' in vision_config:
                repo_id, class_ref = vision_config['auto_map']['AutoConfig'].split("--")
                config_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
                self.vision_config = config_class(**vision_config)
            elif vision_config["model_type"] in CONFIG_MAPPING:
                self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)                
            else:
                raise ValueError(f'vision_config["model_type"] = {vision_config["model_type"]} not supported!')
        
        self.text_config = text_config

        if isinstance(self.text_config, dict):
            text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
            if 'auto_map' in text_config:
                repo_id, class_ref = text_config['auto_map']['AutoConfig'].split("--")
                config_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
                self.text_config = config_class(**text_config)
            elif text_config["model_type"] in CONFIG_MAPPING:
                self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
            else:
                raise ValueError(f'text_config["model_type"] = {text_config["model_type"]} not supported!')
            

        super().__init__(**kwargs)



@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
class LlavaCausalLMOutputWithPast(ModelOutput):

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    position_ids: Optional[torch.LongTensor] = None
    
def add_split_tokens(image_features, image_newline_embed, image_new_embed):
    num_images, num_image_patches, embed_dim = image_features.shape
    num_height_patches, num_width_patches = int(math.sqrt(num_image_patches)), int(math.sqrt(num_image_patches))

    # add image_newline
    image_features = image_features.view(num_images, num_height_patches, num_width_patches, embed_dim)
    image_features = torch.cat([
        image_features,
        image_newline_embed.expand((num_images, num_height_patches, 1, embed_dim))
    ], dim=2)
    num_image_patches += num_height_patches
    image_features = image_features.view(num_images, num_image_patches, embed_dim)

    # add image_new
    image_features = torch.cat([
        image_features,
        image_new_embed.expand((num_images, 1, embed_dim))
    ], dim = 1)

    return image_features


class LlavaMultiModalProjector(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()
        self.config = config

        self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.act = ACT2FN[config.projector_hidden_act]
        self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)

        image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long)
        image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long)
        self.register_buffer('image_newline_idx', image_newline_idx, persistent=False)
        self.register_buffer('image_new_idx', image_new_idx, persistent=False)
        

    def forward(self, image_features, input_embeddings):

        selected_image_feature = image_features[self.config.vision_feature_layer]

        if self.config.vision_feature_select_strategy == "default":
            selected_image_feature = selected_image_feature[:, 1:]
        elif self.config.vision_feature_select_strategy == "full":
            selected_image_feature = selected_image_feature
        else:
            raise ValueError(
                f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
            )

        hidden_states = self.linear_1(selected_image_feature)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_2(hidden_states)

        image_newline_embed = input_embeddings(self.image_newline_idx).squeeze()
        image_new_embed = input_embeddings(self.image_new_idx).squeeze()
        hidden_states = add_split_tokens(hidden_states, image_newline_embed, image_new_embed)
        return hidden_states

class PixelShuffleMultiModalProjector(nn.Module):
    def __init__(self, config: LlavaConfig):
        super().__init__()
        self.config = config

        self.downsample_ratio = 0.5
        vit_hidden_size = config.vision_config.hidden_size
        llm_hidden_size = config.text_config.hidden_size

        self.mlp = nn.Sequential(
            nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
            nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
            nn.GELU(),
            nn.Linear(llm_hidden_size, llm_hidden_size)
        )

        image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long)
        image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long)
        self.register_buffer('image_newline_idx', image_newline_idx, persistent=False)
        self.register_buffer('image_new_idx', image_new_idx, persistent=False)
    
    def forward(self, image_features, input_embeddings):
        selected_image_feature = image_features[self.config.vision_feature_layer]

        if self.config.vision_feature_select_strategy == "default":
            selected_image_feature = selected_image_feature[:, 1:]
        elif self.config.vision_feature_select_strategy == "full":
            selected_image_feature = selected_image_feature
        else:
            raise ValueError(
                f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
            )
        
        image_features = self.pixel_shuffle(selected_image_feature)
        hidden_states = self.mlp(image_features)
        
        image_newline_embed = input_embeddings(self.image_newline_idx).squeeze()
        image_new_embed = input_embeddings(self.image_new_idx).squeeze()
        hidden_states = add_split_tokens(hidden_states, image_newline_embed, image_new_embed)

        return hidden_states

    def pixel_shuffle(self, x, scale_factor=0.5):
        if scale_factor == 1:
            return x
        n, wh, c = x.shape
        h, w = int(math.sqrt(wh)), int(math.sqrt(wh))
        x = x.view(n, h, w, c)

        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        x = x.permute(0, 2, 1, 3).contiguous()
        x = x.view(x.shape[0], -1, x.shape[-1])
        return x
        

LLAVA_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`LlavaConfig`] or [`LlavaVisionConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

class TarsierPreTrainedModel(PreTrainedModel):
    config_class = LlavaConfig
    base_model_prefix = "llm"
    supports_gradient_checkpointing = True # TODO: support latest gc
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = False
    _supports_cache_class = True # TODO: support different cache
    _supports_static_cache = True

    def _init_weights(self, module):
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.weight.data.fill_(1.0)
            if module.bias is not None:
                module.bias.data.zero_()
    @property
    def _no_split_modules(self):
        return self.language_model._no_split_modules + self.vision_tower._no_split_modules 


class TarsierForConditionalGeneration(TarsierPreTrainedModel, GenerationMixin):
    def __init__(self, config: LlavaConfig):
        super().__init__(config)
        self.vision_tower = AutoModel.from_config(config.vision_config, trust_remote_code=True)
        if config.text_config.model_type == 'qwen2':
            self.language_model = Qwen2ForCausalLM(config.text_config)
        elif config.text_config.model_type == 'qwen2_vl':
            self.language_model = Qwen2VLForCausalLM(config.text_config)
        elif config.text_config.model_type == 'llama':
            self.language_model = LlamaForCausalLM(config.text_config)
        else:
            raise ValueError(f'{config.text_config.model_type} not supported!')

        if config.projection_head == 'Pixel_Shuffle':
            self.multi_modal_projector = PixelShuffleMultiModalProjector(config)
        elif config.projection_head == 'MLP':
            self.multi_modal_projector = LlavaMultiModalProjector(config)
        elif config.projection_head == 'auto_map':
            repo_id, class_ref = config.auto_map['ProjectionLayer'].split("--")
            model_class = get_class_from_dynamic_module(class_ref, repo_id)
            self.multi_modal_projector = model_class(config)
        elif config.projection_head is None:
            self.multi_modal_projector = lambda x, *args, **kwargs: x

        self.post_init()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def tie_weights(self):
        return self.language_model.tie_weights()

    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        pixel_values: torch.FloatTensor = None,
        image_grid_thw: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        num_images: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        use_rmpad: Optional[bool] = False,
        **kwargs,
    ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
        
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
       
        
        if input_ids is None:
            raise ValueError("You must specify input_ids")
        
        bsz, max_seq_len = input_ids.shape[0], input_ids.shape[1]

        if max_seq_len > 1:
            special_image_mask = input_ids == self.config.image_token_index
            print(f'[{input_ids.device}] num_images: {num_images.tolist()} num_image_tokens: {special_image_mask.sum(-1).tolist()}', flush=True)

        if position_ids is None:
            if 'Qwen2VLForCausalLM' in self.language_model.__class__.__name__:
                position_ids = self.language_model.get_rope_index(input_ids, image_grid_thw, attention_mask) # [bsz, seqlen, 3]
            else:
                position_ids = attention_mask.long().cumsum(-1) - 1 #  # [bsz, seqlen]
                position_ids.masked_fill_(attention_mask == 0, 1)
        
        
        if use_rmpad:
            input_ids, input_ids_indices, cu_seqlens, _ = _unpad_input(input_ids, attention_mask) # [bsz, seqlen] -> [1, seqlen]
            position_ids, _, _, _ = _unpad_input(position_ids, attention_mask)
            input_ids, position_ids = input_ids.unsqueeze(0), position_ids.unsqueeze(0)
        else:
            input_ids_indices, cu_seqlens = None, None

        inputs_embeds = self.get_input_embeddings()(input_ids) # [1, seqlen, dim]
        
        image_features = None
        if pixel_values is not None: # training / first step in generation
            if 'Qwen2VLForCausalLM' in self.language_model.__class__.__name__:
                pixel_values = pixel_values.type(self.vision_tower.get_dtype())
                image_features = self.vision_tower(pixel_values, image_grid_thw)
            else:
                image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
                image_features = self.multi_modal_projector(
                    image_outputs.hidden_states,
                    self.get_input_embeddings(),
                )

            special_image_mask = input_ids == self.config.image_token_index
            if special_image_mask.sum() > 0:
                image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(
                    special_image_mask.unsqueeze(-1).expand_as(inputs_embeds),
                    image_features
                )
            else:
                inputs_embeds = image_features.sum(dim=(0,1)) * 0. + inputs_embeds

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_rmpad=use_rmpad,
            cu_seqlens=cu_seqlens,
        )

        logits = outputs[0]

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            if use_rmpad:
                labels = labels.view(-1)[input_ids_indices.long()]
                shift_labels = torch.cat((labels[1:], labels.new_ones((1))*-100))
                shift_labels.requires_grad = False
                lbl_seq_lens = (cu_seqlens[1:]-1).long()
                shift_labels[lbl_seq_lens] = -100
                loss = loss_fct(logits.squeeze(0), shift_labels)
            else:
                # Shift so that tokens < n predict n
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
                # Flatten the tokens
                shift_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
                shift_labels = shift_labels.view(-1)
                # Enable model parallelism
                shift_labels = shift_labels.to(shift_logits.device)
                loss = loss_fct(shift_logits, shift_labels)
        elif use_rmpad: # 训练的时候,就不 unpad logits 了,节省显存。
            logits = _pad_input(logits.squeeze(0), input_ids_indices, bsz, max_seq_len)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return LlavaCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            position_ids=position_ids,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        attention_mask=None,
        position_ids=None,
        past_key_values=None,
        cache_position=None,
        use_cache=True,
        pixel_values=None,
        image_grid_thw=None,
        **kwargs,
    ):
        if past_key_values is not None:
            past_length = past_key_values.get_seq_length()
            input_ids = input_ids[:, past_length:]

        model_inputs = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "past_key_values": past_key_values,
            "use_cache": use_cache,
        }
        if kwargs.get('num_images') is not None:
            model_inputs['num_images'] = kwargs['num_images']

        if cache_position[0] == 0:
            # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
            # Otherwise we need pixel values to be passed to model
            model_inputs["pixel_values"] = pixel_values
            model_inputs["image_grid_thw"] = image_grid_thw
        else:
            model_inputs['position_ids'] = position_ids[:, -1, ...].unsqueeze(1).to(device=input_ids.device) + 1
        return model_inputs


    def _update_model_kwargs_for_generation(
        self,
        outputs: ModelOutput,
        model_kwargs: Dict[str, Any],
        is_encoder_decoder: bool = False,
        num_new_tokens: int = 1,
    ) -> Dict[str, Any]:
        model_kwargs = super()._update_model_kwargs_for_generation(
            outputs=outputs,
            model_kwargs=model_kwargs,
            is_encoder_decoder=is_encoder_decoder,
            num_new_tokens=num_new_tokens,
        )

        if getattr(outputs, "position_ids", None) is not None:
            model_kwargs["position_ids"] = outputs.position_ids

        return model_kwargs