from dataclasses import dataclass from typing import List, Optional, Tuple, Union, Dict, Any import math import torch.utils.checkpoint from torch import nn import torch.nn.functional as F from transformers import PreTrainedModel, AutoConfig, AutoModel from transformers.activations import ACT2FN from transformers.cache_utils import Cache from transformers.modeling_outputs import ModelOutput from transformers.utils import logging from transformers.configuration_utils import PretrainedConfig from transformers.dynamic_module_utils import get_class_from_dynamic_module from transformers.models.auto import AutoModel, AutoModelForCausalLM, CONFIG_MAPPING from transformers.generation import GenerationMixin from transformers import LlamaForCausalLM, Qwen2ForCausalLM # from models.modeling_qwen2 import Qwen2ForCausalLM from models.modeling_qwen2_vl_fast import Qwen2VLForCausalLM from models.utils import _pad_input, _unpad_input logger = logging.get_logger(__name__) class LlavaConfig(PretrainedConfig): model_type = "llava" is_composition = False def __init__( self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=32000, projector_hidden_act="gelu", vision_feature_select_strategy="default", vision_feature_layer=-2, image_newline_idx=32002, image_new_idx=32003, projection_head="MLP", **kwargs, ): self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.image_newline_idx = image_newline_idx self.image_new_idx = image_new_idx self.projection_head = projection_head self.vision_config = vision_config if isinstance(self.vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" ) if 'auto_map' in vision_config: repo_id, class_ref = vision_config['auto_map']['AutoConfig'].split("--") config_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs) self.vision_config = config_class(**vision_config) elif vision_config["model_type"] in CONFIG_MAPPING: self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) else: raise ValueError(f'vision_config["model_type"] = {vision_config["model_type"]} not supported!') self.text_config = text_config if isinstance(self.text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" if 'auto_map' in text_config: repo_id, class_ref = text_config['auto_map']['AutoConfig'].split("--") config_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs) self.text_config = config_class(**text_config) elif text_config["model_type"] in CONFIG_MAPPING: self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) else: raise ValueError(f'text_config["model_type"] = {text_config["model_type"]} not supported!') super().__init__(**kwargs) @dataclass # Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava class LlavaCausalLMOutputWithPast(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None position_ids: Optional[torch.LongTensor] = None def add_split_tokens(image_features, image_newline_embed, image_new_embed): num_images, num_image_patches, embed_dim = image_features.shape num_height_patches, num_width_patches = int(math.sqrt(num_image_patches)), int(math.sqrt(num_image_patches)) # add image_newline image_features = image_features.view(num_images, num_height_patches, num_width_patches, embed_dim) image_features = torch.cat([ image_features, image_newline_embed.expand((num_images, num_height_patches, 1, embed_dim)) ], dim=2) num_image_patches += num_height_patches image_features = image_features.view(num_images, num_image_patches, embed_dim) # add image_new image_features = torch.cat([ image_features, image_new_embed.expand((num_images, 1, embed_dim)) ], dim = 1) return image_features class LlavaMultiModalProjector(nn.Module): def __init__(self, config: LlavaConfig): super().__init__() self.config = config self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long) image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long) self.register_buffer('image_newline_idx', image_newline_idx, persistent=False) self.register_buffer('image_new_idx', image_new_idx, persistent=False) def forward(self, image_features, input_embeddings): selected_image_feature = image_features[self.config.vision_feature_layer] if self.config.vision_feature_select_strategy == "default": selected_image_feature = selected_image_feature[:, 1:] elif self.config.vision_feature_select_strategy == "full": selected_image_feature = selected_image_feature else: raise ValueError( f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}" ) hidden_states = self.linear_1(selected_image_feature) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) image_newline_embed = input_embeddings(self.image_newline_idx).squeeze() image_new_embed = input_embeddings(self.image_new_idx).squeeze() hidden_states = add_split_tokens(hidden_states, image_newline_embed, image_new_embed) return hidden_states class PixelShuffleMultiModalProjector(nn.Module): def __init__(self, config: LlavaConfig): super().__init__() self.config = config self.downsample_ratio = 0.5 vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.text_config.hidden_size self.mlp = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long) image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long) self.register_buffer('image_newline_idx', image_newline_idx, persistent=False) self.register_buffer('image_new_idx', image_new_idx, persistent=False) def forward(self, image_features, input_embeddings): selected_image_feature = image_features[self.config.vision_feature_layer] if self.config.vision_feature_select_strategy == "default": selected_image_feature = selected_image_feature[:, 1:] elif self.config.vision_feature_select_strategy == "full": selected_image_feature = selected_image_feature else: raise ValueError( f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}" ) image_features = self.pixel_shuffle(selected_image_feature) hidden_states = self.mlp(image_features) image_newline_embed = input_embeddings(self.image_newline_idx).squeeze() image_new_embed = input_embeddings(self.image_new_idx).squeeze() hidden_states = add_split_tokens(hidden_states, image_newline_embed, image_new_embed) return hidden_states def pixel_shuffle(self, x, scale_factor=0.5): if scale_factor == 1: return x n, wh, c = x.shape h, w = int(math.sqrt(wh)), int(math.sqrt(wh)) x = x.view(n, h, w, c) n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) x = x.permute(0, 2, 1, 3).contiguous() x = x.view(x.shape[0], -1, x.shape[-1]) return x LLAVA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LlavaConfig`] or [`LlavaVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ class TarsierPreTrainedModel(PreTrainedModel): config_class = LlavaConfig base_model_prefix = "llm" supports_gradient_checkpointing = True # TODO: support latest gc _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = False _supports_cache_class = True # TODO: support different cache _supports_static_cache = True def _init_weights(self, module): std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.weight.data.fill_(1.0) if module.bias is not None: module.bias.data.zero_() @property def _no_split_modules(self): return self.language_model._no_split_modules + self.vision_tower._no_split_modules class TarsierForConditionalGeneration(TarsierPreTrainedModel, GenerationMixin): def __init__(self, config: LlavaConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config, trust_remote_code=True) if config.text_config.model_type == 'qwen2': self.language_model = Qwen2ForCausalLM(config.text_config) elif config.text_config.model_type == 'qwen2_vl': self.language_model = Qwen2VLForCausalLM(config.text_config) elif config.text_config.model_type == 'llama': self.language_model = LlamaForCausalLM(config.text_config) else: raise ValueError(f'{config.text_config.model_type} not supported!') if config.projection_head == 'Pixel_Shuffle': self.multi_modal_projector = PixelShuffleMultiModalProjector(config) elif config.projection_head == 'MLP': self.multi_modal_projector = LlavaMultiModalProjector(config) elif config.projection_head == 'auto_map': repo_id, class_ref = config.auto_map['ProjectionLayer'].split("--") model_class = get_class_from_dynamic_module(class_ref, repo_id) self.multi_modal_projector = model_class(config) elif config.projection_head is None: self.multi_modal_projector = lambda x, *args, **kwargs: x self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def tie_weights(self): return self.language_model.tie_weights() def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) # update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings return model_embeds def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, pixel_values: torch.FloatTensor = None, image_grid_thw: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, num_images: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_rmpad: Optional[bool] = False, **kwargs, ) -> Union[Tuple, LlavaCausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You must specify input_ids") bsz, max_seq_len = input_ids.shape[0], input_ids.shape[1] if max_seq_len > 1: special_image_mask = input_ids == self.config.image_token_index print(f'[{input_ids.device}] num_images: {num_images.tolist()} num_image_tokens: {special_image_mask.sum(-1).tolist()}', flush=True) if position_ids is None: if 'Qwen2VLForCausalLM' in self.language_model.__class__.__name__: position_ids = self.language_model.get_rope_index(input_ids, image_grid_thw, attention_mask) # [bsz, seqlen, 3] else: position_ids = attention_mask.long().cumsum(-1) - 1 # # [bsz, seqlen] position_ids.masked_fill_(attention_mask == 0, 1) if use_rmpad: input_ids, input_ids_indices, cu_seqlens, _ = _unpad_input(input_ids, attention_mask) # [bsz, seqlen] -> [1, seqlen] position_ids, _, _, _ = _unpad_input(position_ids, attention_mask) input_ids, position_ids = input_ids.unsqueeze(0), position_ids.unsqueeze(0) else: input_ids_indices, cu_seqlens = None, None inputs_embeds = self.get_input_embeddings()(input_ids) # [1, seqlen, dim] image_features = None if pixel_values is not None: # training / first step in generation if 'Qwen2VLForCausalLM' in self.language_model.__class__.__name__: pixel_values = pixel_values.type(self.vision_tower.get_dtype()) image_features = self.vision_tower(pixel_values, image_grid_thw) else: image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) image_features = self.multi_modal_projector( image_outputs.hidden_states, self.get_input_embeddings(), ) special_image_mask = input_ids == self.config.image_token_index if special_image_mask.sum() > 0: image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter( special_image_mask.unsqueeze(-1).expand_as(inputs_embeds), image_features ) else: inputs_embeds = image_features.sum(dim=(0,1)) * 0. + inputs_embeds outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, use_rmpad=use_rmpad, cu_seqlens=cu_seqlens, ) logits = outputs[0] loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() if use_rmpad: labels = labels.view(-1)[input_ids_indices.long()] shift_labels = torch.cat((labels[1:], labels.new_ones((1))*-100)) shift_labels.requires_grad = False lbl_seq_lens = (cu_seqlens[1:]-1).long() shift_labels[lbl_seq_lens] = -100 loss = loss_fct(logits.squeeze(0), shift_labels) else: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens shift_logits = shift_logits.view(-1, self.config.text_config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) elif use_rmpad: # 训练的时候,就不 unpad logits 了,节省显存。 logits = _pad_input(logits.squeeze(0), input_ids_indices, bsz, max_seq_len) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return LlavaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, position_ids=position_ids, ) def prepare_inputs_for_generation( self, input_ids, attention_mask=None, position_ids=None, past_key_values=None, cache_position=None, use_cache=True, pixel_values=None, image_grid_thw=None, **kwargs, ): if past_key_values is not None: past_length = past_key_values.get_seq_length() input_ids = input_ids[:, past_length:] model_inputs = { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } if kwargs.get('num_images') is not None: model_inputs['num_images'] = kwargs['num_images'] if cache_position[0] == 0: # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore # Otherwise we need pixel values to be passed to model model_inputs["pixel_values"] = pixel_values model_inputs["image_grid_thw"] = image_grid_thw else: model_inputs['position_ids'] = position_ids[:, -1, ...].unsqueeze(1).to(device=input_ids.device) + 1 return model_inputs def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, num_new_tokens: int = 1, ) -> Dict[str, Any]: model_kwargs = super()._update_model_kwargs_for_generation( outputs=outputs, model_kwargs=model_kwargs, is_encoder_decoder=is_encoder_decoder, num_new_tokens=num_new_tokens, ) if getattr(outputs, "position_ids", None) is not None: model_kwargs["position_ids"] = outputs.position_ids return model_kwargs