Spaces:
Runtime error
Runtime error
from typing import TYPE_CHECKING, Dict | |
import gradio as gr | |
from transformers.trainer_utils import SchedulerType | |
from ...extras.constants import TRAINING_STAGES | |
from ..common import DEFAULT_DATA_DIR, list_adapters, list_dataset | |
from ..components.data import create_preview_box | |
from ..utils import gen_plot | |
if TYPE_CHECKING: | |
from gradio.components import Component | |
from ..engine import Engine | |
def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: | |
input_elems = engine.manager.get_base_elems() | |
elem_dict = dict() | |
with gr.Row(): | |
training_stage = gr.Dropdown( | |
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2 | |
) | |
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2) | |
dataset = gr.Dropdown(multiselect=True, scale=4) | |
preview_elems = create_preview_box(dataset_dir, dataset) | |
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False) | |
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False) | |
input_elems.update({training_stage, dataset_dir, dataset}) | |
elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems)) | |
with gr.Row(): | |
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1) | |
learning_rate = gr.Textbox(value="5e-5") | |
num_train_epochs = gr.Textbox(value="3.0") | |
max_samples = gr.Textbox(value="100000") | |
compute_type = gr.Radio(choices=["fp16", "bf16", "fp32"], value="fp16") | |
input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type}) | |
elem_dict.update( | |
dict( | |
cutoff_len=cutoff_len, | |
learning_rate=learning_rate, | |
num_train_epochs=num_train_epochs, | |
max_samples=max_samples, | |
compute_type=compute_type, | |
) | |
) | |
with gr.Row(): | |
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1) | |
gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1) | |
lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine") | |
max_grad_norm = gr.Textbox(value="1.0") | |
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001) | |
input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size}) | |
elem_dict.update( | |
dict( | |
batch_size=batch_size, | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
lr_scheduler_type=lr_scheduler_type, | |
max_grad_norm=max_grad_norm, | |
val_size=val_size, | |
) | |
) | |
with gr.Accordion(label="Extra config", open=False) as extra_tab: | |
with gr.Row(): | |
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5) | |
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10) | |
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1) | |
neftune_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1) | |
with gr.Column(): | |
sft_packing = gr.Checkbox(value=False) | |
upcast_layernorm = gr.Checkbox(value=False) | |
input_elems.update({logging_steps, save_steps, warmup_steps, neftune_alpha, sft_packing, upcast_layernorm}) | |
elem_dict.update( | |
dict( | |
extra_tab=extra_tab, | |
logging_steps=logging_steps, | |
save_steps=save_steps, | |
warmup_steps=warmup_steps, | |
neftune_alpha=neftune_alpha, | |
sft_packing=sft_packing, | |
upcast_layernorm=upcast_layernorm, | |
) | |
) | |
with gr.Accordion(label="LoRA config", open=False) as lora_tab: | |
with gr.Row(): | |
lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1) | |
lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) | |
lora_target = gr.Textbox(scale=1) | |
additional_target = gr.Textbox(scale=1) | |
create_new_adapter = gr.Checkbox(scale=1) | |
input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, create_new_adapter}) | |
elem_dict.update( | |
dict( | |
lora_tab=lora_tab, | |
lora_rank=lora_rank, | |
lora_dropout=lora_dropout, | |
lora_target=lora_target, | |
additional_target=additional_target, | |
create_new_adapter=create_new_adapter, | |
) | |
) | |
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab: | |
with gr.Row(): | |
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) | |
dpo_ftx = gr.Slider(value=0, minimum=0, maximum=10, step=0.01, scale=1) | |
reward_model = gr.Dropdown(scale=2, allow_custom_value=True) | |
refresh_btn = gr.Button(scale=1) | |
refresh_btn.click( | |
list_adapters, | |
[engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")], | |
[reward_model], | |
queue=False, | |
) | |
input_elems.update({dpo_beta, dpo_ftx, reward_model}) | |
elem_dict.update( | |
dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, dpo_ftx=dpo_ftx, reward_model=reward_model, refresh_btn=refresh_btn) | |
) | |
with gr.Row(): | |
cmd_preview_btn = gr.Button() | |
start_btn = gr.Button() | |
stop_btn = gr.Button() | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Row(): | |
output_dir = gr.Textbox() | |
with gr.Row(): | |
resume_btn = gr.Checkbox(visible=False, interactive=False, value=False) | |
process_bar = gr.Slider(visible=False, interactive=False) | |
with gr.Box(): | |
output_box = gr.Markdown() | |
with gr.Column(scale=1): | |
loss_viewer = gr.Plot() | |
input_elems.add(output_dir) | |
output_elems = [output_box, process_bar] | |
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems) | |
start_btn.click(engine.runner.run_train, input_elems, output_elems) | |
stop_btn.click(engine.runner.set_abort, queue=False) | |
resume_btn.change(engine.runner.monitor, outputs=output_elems) | |
elem_dict.update( | |
dict( | |
cmd_preview_btn=cmd_preview_btn, | |
start_btn=start_btn, | |
stop_btn=stop_btn, | |
output_dir=output_dir, | |
resume_btn=resume_btn, | |
process_bar=process_bar, | |
output_box=output_box, | |
loss_viewer=loss_viewer, | |
) | |
) | |
output_box.change( | |
gen_plot, | |
[ | |
engine.manager.get_elem_by_name("top.model_name"), | |
engine.manager.get_elem_by_name("top.finetuning_type"), | |
output_dir, | |
], | |
loss_viewer, | |
queue=False, | |
) | |
return elem_dict | |